Tìm x:(x2-1)3-(x4+x2+1)(x2-1)=0
Giúp mình với,càng nhanh càng tốt!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+ax^3+bx-1=\left(x^2-1\right)\left(x^2+1\right)+ax\left(x^2-1\right)+\left(a+b\right)x\)
\(\Rightarrow x^4+ax^3+bx-1\) chia hết cho \(x^2-1\) khi \(a+b=0\)
\(\Leftrightarrow b=-a\)
(Chỉ cần a; b là 2 số đối nhau là đủ, có vô số cặp a;b thỏa mãn đề bài, ví dụ (a;b)=(1;-1); (2;-2); (3;-3)... đều đúng)
Hai bài bị trùng nhau nên các bạn nhìn ảnh hay văn bản đều như nhau ạ
c: =>x+2>0
hay x>-2
d: =>-4<=x<=3
e: =>\(x\in\varnothing\)
f: \(\Leftrightarrow\left[{}\begin{matrix}x>4\\x< -6\end{matrix}\right.\)
Ta có: \(\left(1-x\right)^2+\left(x-x^2\right)+3=0\)
\(\Leftrightarrow x^2-2x+1+x-x^2+3=0\)
\(\Leftrightarrow4-x=0\)
hay x=4
Vậy: S={4}
$⇔x^2-2x+1+x-x^2+3=0$
$⇔-x=-4$
$⇔x=4$
Vậy phương trình đã cho có tập nghiệm S={4}
\(\left(x^2+1\right)\left(x-5\right)=0\\ \Rightarrow\left\{{}\begin{matrix}x^2+1=0\left(vô.lí.vì.x^2\ge0,1>0\right)\\x-5=0\end{matrix}\right.\\ \Rightarrow x=5\)
\(\left(x^2+1\right)\left(x-5\right)=0\)
TH1 : x^2 + 1 = 0 ( vô lí vì x^2 + 1 > 0 )
TH2 : x - 5 = 0 <=> x = 5
Vậy x = 5
a. \(x^4-16=0\\ \Leftrightarrow\left(x^2-4\right)\left(x^2+4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
b. \(x^2-9x+8=0\\ \Leftrightarrow x^2-x-8x+8=0\\ \Leftrightarrow x\left(x-1\right)-8\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)
\(a)\left(x-2\right)\left(x^2+2x-3\right)\ge0.\)
Đặt \(f\left(x\right)=\left(x-2\right)\left(x^2+2x-3\right).\)
Ta có: \(x-2=0.\Leftrightarrow x=2.\\ x^2+2x-3=0.\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=-3.\end{matrix}\right.\)
Bảng xét dấu:
x \(-\infty\) -3 1 2 \(+\infty\)
\(x-2\) - | - | - 0 +
\(x^2+2x-3\) + 0 - 0 + | +
\(f\left(x\right)\) - 0 + 0 - 0 +
Vậy \(f\left(x\right)\ge0.\Leftrightarrow x\in\left[-3;1\right]\cup[2;+\infty).\)
\(b)\dfrac{x^2-9}{-x+5}< 0.\)
Đặt \(g\left(x\right)=\dfrac{x^2-9}{-x+5}.\)
Ta có: \(x^2-9=0.\Leftrightarrow\left[{}\begin{matrix}x=3.\\x=-3.\end{matrix}\right.\)
\(-x+5=0.\Leftrightarrow x=5.\)
Bảng xét dấu:
x \(-\infty\) -3 3 5 \(+\infty\)
\(x^2-9\) + 0 - 0 + | +
\(-x+5\) + | + | + 0 -
\(g\left(x\right)\) + 0 - 0 + || -
Vậy \(g\left(x\right)< 0.\Leftrightarrow x\in\left(-3;3\right)\cup\left(5;+\infty\right).\)
Ta có : (x2 - 1)3 - (x4 + x2 + 1)(x2 - 1) = 0
=> (x2 - 1)[(x2 - 1)2 - (x4 + x2 + 1)] = 0
<=> (x2 - 1)(x4 - 2x2 + 1 - x4 - x2 - 1) = 0
<=> (x2 - 1)(-3x2) = 0
\(\Leftrightarrow\orbr{\begin{cases}x^2-1=0\\-3x^2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=1\\x^2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1;1\\x=0\end{cases}}\)
pt đã cho \(\Leftrightarrow\left(x^2-1\right)\left(x^4-2x^2+1-x^4-x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(-3x^2\right)=0\) \(\Leftrightarrow\orbr{\begin{cases}x=+-1\\x=0\end{cases}}\)
Kl: x= +-1 ; x=0