K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2017

Ta có : (x- 1)- (x+ x+ 1)(x- 1) = 0

=> (x2 - 1)[(x- 1)2 -  (x+ x+ 1)] = 0

<=> (x2 - 1)(x4 - 2x2 + 1 - x- x2 - 1) = 0

<=>  (x2 - 1)(-3x2) = 0

\(\Leftrightarrow\orbr{\begin{cases}x^2-1=0\\-3x^2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=1\\x^2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1;1\\x=0\end{cases}}\)

1 tháng 8 2017

pt đã cho \(\Leftrightarrow\left(x^2-1\right)\left(x^4-2x^2+1-x^4-x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(-3x^2\right)=0\) \(\Leftrightarrow\orbr{\begin{cases}x=+-1\\x=0\end{cases}}\)

Kl: x= +-1 ; x=0

NV
2 tháng 7 2021

\(x^4+ax^3+bx-1=\left(x^2-1\right)\left(x^2+1\right)+ax\left(x^2-1\right)+\left(a+b\right)x\)

\(\Rightarrow x^4+ax^3+bx-1\) chia hết cho \(x^2-1\) khi \(a+b=0\)

\(\Leftrightarrow b=-a\)

(Chỉ cần a; b là 2 số đối nhau là đủ, có vô số cặp a;b thỏa mãn đề bài, ví dụ (a;b)=(1;-1); (2;-2); (3;-3)... đều đúng)

4 tháng 7 2021

you are so smart

15 tháng 1 2022

Hai bài bị trùng nhau nên các bạn nhìn ảnh hay văn bản đều như nhau ạ

c: =>x+2>0

hay x>-2

d: =>-4<=x<=3

e: =>\(x\in\varnothing\)

f: \(\Leftrightarrow\left[{}\begin{matrix}x>4\\x< -6\end{matrix}\right.\)

Ta có: \(\left(1-x\right)^2+\left(x-x^2\right)+3=0\)

\(\Leftrightarrow x^2-2x+1+x-x^2+3=0\)

\(\Leftrightarrow4-x=0\)

hay x=4

Vậy: S={4}

21 tháng 3 2021

$⇔x^2-2x+1+x-x^2+3=0$

$⇔-x=-4$

$⇔x=4$

Vậy phương trình đã cho có tập nghiệm S={4}

17 tháng 1 2022

\(\left(x^2+1\right)\left(x-5\right)=0\\ \Rightarrow\left\{{}\begin{matrix}x^2+1=0\left(vô.lí.vì.x^2\ge0,1>0\right)\\x-5=0\end{matrix}\right.\\ \Rightarrow x=5\)

17 tháng 1 2022

\(\left(x^2+1\right)\left(x-5\right)=0\)

TH1 : x^2 + 1 = 0 ( vô lí vì x^2 + 1 > 0 ) 

TH2 : x - 5 = 0 <=> x = 5 

Vậy x = 5 

28 tháng 10 2021

a. \(x^4-16=0\\ \Leftrightarrow\left(x^2-4\right)\left(x^2+4\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

b. \(x^2-9x+8=0\\ \Leftrightarrow x^2-x-8x+8=0\\ \Leftrightarrow x\left(x-1\right)-8\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)

28 tháng 10 2021

a. x- 16 = 0
=> x4 = 16
=> x= 24
=> x = 2
b. x- 9x + 8 = 0
=> x- 8x - x + 8 = 0
=> ( x2 - x ) - ( 8x - 8 ) = 0
=> x(x-1) - 8(x-1)=0
=> (x-1)(x-8)=0
=>TH1: x-1=0       TH2 : x-8=0
=> x=1                       => x=8
 

26 tháng 7 2018

a) Kết quả M = x 4 – 1.

b) Kết quả M =  x 2  – 2x – 3.

22 tháng 5 2023

chữ xấu vậy trời😅

24 tháng 2 2022

\(a)\left(x-2\right)\left(x^2+2x-3\right)\ge0.\)

Đặt \(f\left(x\right)=\left(x-2\right)\left(x^2+2x-3\right).\)

Ta có: \(x-2=0.\Leftrightarrow x=2.\\ x^2+2x-3=0.\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=-3.\end{matrix}\right.\)

Bảng xét dấu:

x                   \(-\infty\)       -3       1       2     \(+\infty\)

\(x-2\)                    -      |    -   |   -   0   +

\(x^2+2x-3\)         +     0    -   0  +   |    +

\(f\left(x\right)\)                     -     0    +  0   -  0   +

Vậy \(f\left(x\right)\ge0.\Leftrightarrow x\in\left[-3;1\right]\cup[2;+\infty).\)

\(b)\dfrac{x^2-9}{-x+5}< 0.\)

Đặt \(g\left(x\right)=\dfrac{x^2-9}{-x+5}.\)

Ta có: \(x^2-9=0.\Leftrightarrow\left[{}\begin{matrix}x=3.\\x=-3.\end{matrix}\right.\)

\(-x+5=0.\Leftrightarrow x=5.\)

Bảng xét dấu:

x            \(-\infty\)      -3       3        5       \(+\infty\)

\(x^2-9\)            +   0   -   0   +   |    +

\(-x+5\)          +    |   +   |    +  0    -

\(g\left(x\right)\)              +    0   -   0   +  ||    -

Vậy \(g\left(x\right)< 0.\Leftrightarrow x\in\left(-3;3\right)\cup\left(5;+\infty\right).\)