Chứng minh rằng nếu các chữ số a, b, c thỏa mãn điều kiện ab:cd = a:c thì abbb : bbbc = a:c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(0,5\left(2007^{2005}-2003^{2003}\right)=\frac{1}{2}\left(2007^{2005}-2003^{2003}\right)\)
\(=\frac{2007^{2005}-2003^{2003}}{2}\)
=> Để \(0,5\left(2007^{2005}-2003^{2003}\right)\) là số nguyên thì \(2007^{2005}-2003^{2003}⋮2\)
Có \(2007^{2005}\)và \(2003^{2003}\)là số lẻ
=> \(2007^{2005}-2003^{2003}\)là số chẵn
=> \(2007^{2005}-2003^{2003}⋮2\)
=> \(0,5\left(2007^{2005}-2003^{2003}\right)\)là số nguyên
bữa trước mình chưa làm được câu 2
2) Có: \(\frac{\overline{ab}}{\overline{bc}}=\frac{a}{c}\)
=> \(\frac{10a+b}{10b+c}=\frac{a}{c}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{10a+b}{10b+c}=\frac{a}{c}=\frac{10a+b-a}{10b+c-c}=\frac{9a+b}{10b}=\frac{111\left(9a+b\right)}{111.10b}=\frac{999a+111b}{1110b}\)
=> \(\frac{a}{c}=\frac{999a+111b}{1110b}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{999a+111b}{1110b}=\frac{a+999a+111b}{c+1110b}=\frac{1000a+100b+10b+b}{1000b+100b+10b+c}\)\(=\frac{\overline{abbb}}{\overline{bbbc}}\)
=> \(\frac{\overline{abbb}}{\overline{bbbc}}=\frac{a}{c}\)
Ta có:
\(\dfrac{\overline{ab}}{\overline{bc}}=\dfrac{a}{c}=\dfrac{9a+b}{10b}=\dfrac{999a+111b}{1110b}=\dfrac{999a+a+111b}{1110b}=\dfrac{1000a+111b}{1110b+c}=\dfrac{\overline{abbb}}{\overline{bbbc}}\)
\(\Rightarrow\) Đpcm.
Chứng minh rằng nếu các số tự nhiên a,b,c thỏa mãn điều kiện a^2 + b^2 = c^2 thì abc chia hết cho 60
Giả sử a,b,c đều không chia hết cho 3 thì phải chia 3 dư 1
thay vào chia 3 dư 2 còn chia 3 dư 1 (loại)
Do đó a,b,c phải tồn tại một số chia hết cho 3 ,
Lại chúng minh tương tự để đc một trong 3 số chia hết cho 4 và 5
Rồi suy ra abc chia hêt cho 3.4.5 = 60
Giả sử a,b,c đều không chia hết cho 3 thì phải chia 3 dư 1
thay vào chia 3 dư 2 còn chia 3 dư 1 (loại)
Do đó a,b,c phải tồn tại một số chia hết cho 3 ,
Lại chúng minh tương tự để đc một trong 3 số chia hết cho 4 và 5
suy ra abc chia hêt cho 3.4.5 = 60
sửa đề là : ab : bc = a : c .... ( có gạch ngang )
Ta có :
\(\frac{\overline{ab}}{\overline{bc}}=\frac{a}{c}=\frac{9a+b}{10b}=\frac{999a+111b}{1110b}=\frac{999a+a+111b}{1110b+c}=\frac{1000a+111b}{1110b+c}=\frac{\overline{abbb}}{\overline{bbbc}}\)
ab¯¯¯¯¯bc¯¯¯¯=ac=9a+b10b=999a+111b1110b=999a+a+111b1110b+c=abbb¯¯¯¯¯¯¯¯¯bbbc¯¯¯¯¯¯¯¯¯