Cho \(x^3+y^3+z^3=3xyz\) và \(a\ne b\ne c\)
C/M: \(a+b+c=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em(mình) thử nhé, ko chắc đâu
3/ Ta có \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2abc\)
\(=\left[ab\left(a+b\right)+abc\right]+\left[bc\left(b+c\right)+abc\right]+\left[ca\left(c+a\right)+ca\right]-abc\)
\(=\left(a+b+c\right)ab+\left(a+b+c\right)bc+\left(a+b+c\right)ca-abc\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)= -abc
Suy ra \(P=\frac{-abc}{abc}=-1\)
Vậy..
Bài 2:
a, \(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)^3-3\left(x+y+z\right)\left(x+y\right)z-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)^3-3\left(x+y+z\right)\left(xy+yz+zx\right)\)
\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3xy-3yz-3zx\right]\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
2a ) Ta có:
x³ + y³ + z³ - 3xyz
= (x+y)³ - 3xy(x-y) + z³ - 3xyz
= [(x+y)³ + z³] - 3xy(x+y+z)
= (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z)
= (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy]
= (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy)
= (x+y+z)(x² + y² + z² - xy - xz - yz)
Bài 2:
a)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)
=> a = b = c
b)
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\)
=> x = y = z (theo a)
Thay x = y = z vào biểu thức, ta có:
\(M=\dfrac{x^{333}.x^{666}}{x^{999}}=1\)
c)
\(ac=b^2\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\)
\(ab=c^2\Rightarrow\dfrac{b}{c}=\dfrac{c}{a}\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\Rightarrow a=b=c\)
Thay a = b = c vào biểu thức, ta có:
\(M=\dfrac{a^{333}}{a^{111}.a^{222}}=1\)
Bài 2:
\(x^3+y^3+z^3-3xyz=0\)
<=> \(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
<=> \(\left\{{}\begin{matrix}x+y+z=0\\x^2+y^2+z^2-xy-yz-zx=0\end{matrix}\right.\)
Ta có \(a^2+b^2+c^2\ge ab+bc+ca\)
Áp dụng => \(x^2+y^2+z^2\ge xy+yz+zx\)
Dấu "=" xảy ra <=> x = y = z (vô lí do x,y,z đôi 1 khác nhau)
=> x + y + z =0
=> \(\left\{{}\begin{matrix}x+y=-z\\y+z=-x\\z+x=-y\end{matrix}\right.\)
Thay vào P = -16 - 3 + 2019 = 2000
Bài 1:
Ta có: \(x^2+y^2+5x^2y^2+60=37xy\)
\(\Leftrightarrow x^2+y^2-2xy+60=35xy-5x^2y^2\)
\(\Leftrightarrow\left(x-y\right)^2+60=5\left(7xy-x^2y^2\right)\)
\(\Leftrightarrow\left(x-y\right)^2+60=\frac{5\cdot49}{4}-\frac{5}{4}\left(2xy-7\right)^2\)
\(\Leftrightarrow\left[2\left(x-y\right)\right]^2+5\left(2xy-7\right)^2=5\cdot49-60\cdot4=5\)
mà \(x,y\in Z\) và \(2xy-7\ne0\); \(5\left(2xy-7\right)^2\ge5\)
nên \(\left[2\left(x-y\right)\right]^2=0\)
\(\Leftrightarrow x=y\)
|(2xy-7)|=1
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-7=-1\\2x^2-7=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2=6\\2x^2=8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2=3\left(loại\right)\\x^2=4\end{matrix}\right.\)
\(\Leftrightarrow x=\pm2\)
Vậy: (x,y)=(\(\pm2;\pm2\))
2
a
\(x+y+z=0\)
\(\Rightarrow x+y=-z\)
\(\Rightarrow\left(x+y\right)^3=\left(-z\right)^3\)
\(\Rightarrow x^3+y^3+3x^2y+3xy^2=-z^3\)
\(\Rightarrow x^3+y^3+z^3=3xy\left(x+y\right)=3xyz\)
b
Đặt \(a-b=x;b-c=y;c-a=z\Rightarrow x+y+z=0\)
Ta có bài toán mới:Cho \(x+y+z=0\).Phân tích đa thức thành nhân tử:\(x^3+y^3+z^3\)
Áp dụng kết quả câu a ta được:
\(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
Sửa đề: x+y+z=0
\(x^3+y^3+z^3=3xyz\)
=>\(\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=0\)
=>\(\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)=0\)
=>\(\left(x+y+z\right)\left[x^2+2xy+y^2-xz-yz+z^2-3xy\right]=0\)
=>\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=0\)
=>\(\left(x+y+z\right)\left(2x^2+2y^2+2z^2-2xy-2xz-2yz\right)=0\)
=>\(\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\right]=0\)(1)
x<>y<>z
=>\(x-y< >0;y-z< >0;x-z< >0\)
=>\(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ne0\left(2\right)\)
Từ (1),(2) suy ra x+y+z=0