cho △ABC vuông tại A. biết AB=12 cm, góc B bằng 40 độ
a) tính góc C, AC,BC
b) kẻ đường phân giác AD. Tính DB,DC
GIÚP MIK VS
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(CB=\sqrt{6^2+8^2}=10\)
b: BD là phân giác
=>AD/AB=CD/BC
=>AD/3=CD/5=(AD+CD)/(3+5)=8/8=1
=>AD=3; CD=5
a, Xét Δ ABC vuông tại A, có :
\(BC^2=AB^2+AC^2\) (định lí Py - ta - go)
=> \(BC^2=3^2+4^2\)
=> \(BC^2=25\)
=> BC = 5 (cm)
b,
Xét Δ AHB và Δ CAB, có :
\(\widehat{AHB}=\widehat{CAB}=90^o\)
\(\widehat{ABH}=\widehat{CBA}\) (góc chung)
=> Δ AHB ∾ Δ CAB (g.g)
=> \(\dfrac{HB}{AB}=\dfrac{AH}{CA}\)
=> \(\dfrac{HB}{AH}=\dfrac{AB}{CA}\)
Xét Δ AHB và Δ CHA, có :
\(\widehat{AHB}=\widehat{CHA}=90^o\)
\(\dfrac{HB}{AH}=\dfrac{AB}{CA}\) (cmt)
=> Δ AHB ∾ Δ CHA (cmt)
(Tự vẽ hình)
a) Áp dụng định lý Pytago ta có:
\(BC^2=AB^2+AC^2=3^2+4^2=25\Rightarrow BC=5\left(cm\right)\)
Do \(AD\) là phân giác nên ta có: \(\left\{{}\begin{matrix}BD+CD=BC=5\left(cm\right)\\\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{3}{4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BD+CD=5\\\dfrac{BD}{3}=\dfrac{CD}{4}\end{matrix}\right.\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{5}{7}\Rightarrow\left\{{}\begin{matrix}BD=\dfrac{5}{7}.3=\dfrac{15}{7}\left(cm\right)\\CD=\dfrac{5}{7}.4=\dfrac{20}{7}\left(cm\right)\end{matrix}\right.\)
b) Xét \(\Delta AHB\) và \(\Delta CHA\) có:
\(\widehat{AHB}=\widehat{CHA}=90^0\)
\(\widehat{ABH}=\widehat{CAH}\) (cùng phụ \(\widehat{BAH}\))
\(\Rightarrow\Delta AHB\sim\Delta CHA\) (g.g)
a: Xét ΔABC vuông tại A có
\(BC=\dfrac{AB}{\dfrac{1}{2}}=\dfrac{10}{\dfrac{1}{2}}=20\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC=10\sqrt{3}\left(cm\right)\)
\(a,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\left(pytago\right)\)
\(b,\) Vì \(\widehat{BAC}=\widehat{AHB}\left(=90\right);\widehat{ABC}.chung\)
\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g.g\right)\)
\(c,\Delta ABC\sim\Delta HBA\left(cm.trên\right)\\ \Rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\Rightarrow AB^2=BH\cdot BC\)
\(d,\) Vì AD là p/g góc A
\(\Rightarrow\dfrac{BD}{DC}=\dfrac{AB}{AC}=\dfrac{3}{4}\\ \Rightarrow DC=\dfrac{4}{3}BD\)
Mà \(BD+DC=BC=10\)
\(\Rightarrow\dfrac{4}{3}BD+BD=10\\ \Rightarrow\dfrac{7}{3}BD=10\\ \Rightarrow BD=\dfrac{30}{7}\left(cm\right)\)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
b) Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{HBA}\) chung
Do đó: ΔABC\(\sim\)ΔHBA(g-g)
a. áp dụng định lý py-ta-go vào tam giác ABC, ta có:
AB2+AC2=BC2
62+82= BC2
36+64= BC2
BC2=100
BC= 10 (cm)
b. bạn thiếu đề rồi ạ.
a, Xét Δ ABC vuông tại B, có :
\(AC^2=AB^2+BC^2\)
=> \(20^2=12^2+BC^2\)
=> \(256=BC^2\)
=> BC = 16 (cm)
b, Xét Δ ABO và Δ AEO, có :
\(\widehat{BAO}=\widehat{EAO}\) (AD là đường phân giác \(\widehat{BAE}\))
AO là cạnh chung
\(\widehat{AOB}=\widehat{AOE}=90^o\)
=> Δ ABO = Δ AEO (g.c.g)
c, Ta có : Δ ABO = Δ AEO (cmt)
=> AB = AE
=> Δ ABE cân tại A
Ta có :
Δ ABE cân tại A
AD là phân giác \(\widehat{BAE}\)
=> AD là đường trung trực
=> AD là đường trung trực của AE
d, Ta có : Δ ABE cân tại A
Mà \(\widehat{BAE}=60^o\)
=> Δ ABE là tam giác đều
a: ΔABC vuông tại A
=>\(\widehat{C}+\widehat{B}=90^0\)
=>\(\widehat{C}=50^0\)
Xét ΔABC vuông tại A có
\(sinC=\dfrac{AB}{BC}\)
=>\(\dfrac{12}{BC}=sin50\)
=>\(BC=\dfrac{12}{sin50}\simeq15,66\left(cm\right)\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC=\sqrt{BC^2-AB^2}=\sqrt{15.66^2-12^2}\simeq10,06\left(cm\right)\)
b: Xét ΔABC có AD là phân giác
nên \(\dfrac{DB}{DC}=\dfrac{AB}{AC}=\dfrac{12}{10.06}\simeq1,19\)
=>DB=1,19DC
DB+DC=BC
=>1,19DC+DC=15,66
=>\(DC\simeq7,15\left(cm\right)\)
DB=15,66-7,15=9,51(cm)