Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
b) Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{HBA}\) chung
Do đó: ΔABC\(\sim\)ΔHBA(g-g)
a: BC=căn 6^2+8^2=10cm
b: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có
góc B chung
=>ΔBAC đồng dạng với ΔBHA
c: BA/BH=BC/BA
=>BA^2=BH*BC
BH=6^2/10=3,6cm
HC=10-3,6=6,4cm
d: AD là phân giác
=>DB/AB=DC/AC
=>DB/3=DC/4=10/7
=>DB=30/7cm
a. áp dụng định lý py-ta-go vào tam giác ABC, ta có:
AB2+AC2=BC2
62+82= BC2
36+64= BC2
BC2=100
BC= 10 (cm)
b. bạn thiếu đề rồi ạ.
a: Xét ΔABC vuông tại A và ΔHBA vuôg tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*CB
c: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
BH=12^2/20=144/20=7,2cm
HC=20-7,2=12,8cm
d: AD là phân giác
=>DB/AB=DC/AC
=>DB/3=DC/4=(DB+DC)/(3+4)=20/7
=>DB=60/7cm; DC=80/7cm
a, Theo pytago tam giác ABC vuông tại A
\(BC=\sqrt{36+64}=10cm\)
b, Xét tam giác ABC và tam giác AHB
^BAC = ^AHB = 900
^B _ chung
Vậy tam giác BAC ~ tam giác BHA ( g.g )
c, => AB / BH = BC / AB => AB^2 = BH.BC
=> BH = AB^2/BC = 36/10 = 18/5 cm
=> CH = BC - BH = 32/5 cm
d, Ta có AD là đường pg
\(\dfrac{AB}{AC}=\dfrac{DB}{DC}\Rightarrow\dfrac{DC}{AC}=\dfrac{DB}{AB}\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{DC}{AC}=\dfrac{DB}{AB}=\dfrac{DC+DB}{AC+AB}=\dfrac{10}{14}=\dfrac{5}{7}\Rightarrow DB=\dfrac{5}{7}.6=\dfrac{30}{7}cm\)
a: BC=10cm
b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{B}\) chung
DO đó: ΔABC\(\sim\)ΔHBA
c: Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot CB\)
a: BC=10cm
b: Xét ΔCAB vuông tại A và ΔAHB vuông tại H có
\(\widehat{CBA}\) chung
Do đó: ΔCAB\(\sim\)ΔAHB
c: Ta có: ΔCAB\(\sim\)ΔAHB
nên AC/HA=AB/HB=CB/AB
hay \(AB^2=BH\cdot BC\)
BH=3,6cm
=>CH=6,4cm
a: BC=căn 6^2+8^2=10cm
b: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có
góc B chung
=>ΔBAC đồng dạng với ΔBHA
c: BA/BH=BC/BA
=>BA^2=BH*BC
a: Sửa đề: Tính BC
\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
b: ΔABC vuông tại A
mà AH là đường cao
nên AB^2=BH*BC
BH=6^2/10=3,6cm
CH=10-3,6=6,4cm
\(a,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\left(pytago\right)\)
\(b,\) Vì \(\widehat{BAC}=\widehat{AHB}\left(=90\right);\widehat{ABC}.chung\)
\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g.g\right)\)
\(c,\Delta ABC\sim\Delta HBA\left(cm.trên\right)\\ \Rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\Rightarrow AB^2=BH\cdot BC\)
\(d,\) Vì AD là p/g góc A
\(\Rightarrow\dfrac{BD}{DC}=\dfrac{AB}{AC}=\dfrac{3}{4}\\ \Rightarrow DC=\dfrac{4}{3}BD\)
Mà \(BD+DC=BC=10\)
\(\Rightarrow\dfrac{4}{3}BD+BD=10\\ \Rightarrow\dfrac{7}{3}BD=10\\ \Rightarrow BD=\dfrac{30}{7}\left(cm\right)\)