K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2023

\(M=\dfrac{2^2.3^2.4^2.....20^2}{1.3.2.4.3.5.4.6.5.7.6.8.7.9....19.21}=\)

\(=\dfrac{2^2.3^2.4^2....20^2}{1.2.3^2.4^2....19^2.20.21}=\dfrac{2.20}{21}=\dfrac{40}{21}\)

\(N=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.....\dfrac{10}{11}=\dfrac{1}{11}\)

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Bài 1:

$M=\frac{27}{x-15}-1$

Để $M$ min thì $\frac{27}{x-15}$ min. 

Để $\frac{27}{x-15}$ min thì $x-15$ là số âm lớn nhất 

$\Rightarrow x$ là số nguyên lớn nhất nhỏ hơn 15

$\Rightarrow x=14$

Khi đó: $M_{\min}=\frac{42-14}{14-15}=-28$

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Bài 2:

\(\left(\dfrac{1}{2}\right)^x+\left(\dfrac{1}{2}\right)^{x-4}=17\)

\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{x-4}\left[\left(\dfrac{1}{2}\right)^4+1\right]=17\)

\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{x-4}.\dfrac{17}{16}=17\)

\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{x-4}=16=\left(\dfrac{1}{2}\right)^{-4}\)

$\Rightarrow x-4=-4\Leftrightarrow x=0$

10 tháng 11 2017

câu 1

Câu hỏi của Ngọc Hà - Toán lớp 6 - Học toán với OnlineMath

6 tháng 5 2019

Chỗ 4 mũ 2/3.5 x ... x 59 mũ 2/58.60 nha

6 tháng 5 2019

a, Ta có : \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)

                                                                                   \(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)

=> \(\frac{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}}{\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}}=1\)

=> đpcm

Study well ! >_<

7 tháng 3 2016
Mình mới học lớp 5 nên ko piết
21 tháng 5 2021

Ta có :\(B=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}.....\frac{98^2}{98.99}=\frac{\left(1.2.3.4...98\right).\left(1.2.3.4...98\right)}{\left(1.2.3.4...98\right).\left(2.3.4.5...99\right)}=\frac{1}{99}\)

Lại có A = \(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}=1-\frac{1}{99}=\frac{98}{99}\)

Lại có \(A:B=\frac{98}{99}:\frac{1}{99}=98\)

=> A = 98B

21 tháng 5 2021

các bạn có  về sweet home

23 tháng 6 2017

a) A = \(\dfrac{1^2}{1.2}.\dfrac{2^2}{2.3}.\dfrac{3^2}{3.4}.\dfrac{4^2}{4.5}\)

A = \(\dfrac{1.1}{1.2}.\dfrac{2.2}{2.3}.\dfrac{3.3}{3.4}.\dfrac{4.4}{4.5}\)

A = \(\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}\)= \(\dfrac{1}{5}\)

b) B = \(\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.\dfrac{5^2}{4.6}\)

B = \(\dfrac{2.3.4.5}{1.2.3.4}.\dfrac{2.3.4.5}{3.4.5.6}\)= \(\dfrac{5}{3}\)

I.\(B=9,8+8,7+7,6+...+2,1-1,2-2,3-3,4-...-8,9\)

\(B=\left(9,8-8,9\right)+\left(8,7-7,8\right)+\left(7,6-6,7\right)+...+\left(2,1-1,2\right)\)

\(B=0,9+0,9+0,9+...+0,9\) ( 8 số 0,9 )

\(B=7,2\)

II.

\(\left(a\right)\frac{2}{1\cdot2}+\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+...+\frac{2}{19\cdot20}\)

\(=2\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{19\cdot20}\right)\)

\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{19}-\frac{1}{20}\right)\)

\(=2\left(1-\frac{1}{20}\right)\)

\(=2\cdot\frac{19}{20}=\frac{19}{10}\)

\(\left(b\right)\frac{4}{1\cdot3}+\frac{4}{3\cdot5}+\frac{4}{5\cdot7}+...+\frac{4}{17\cdot19}+\frac{4}{19\cdot21}\)

\(=2\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{17\cdot19}+\frac{2}{19\cdot21}\right)\)

\(=2\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{17}-\frac{1}{19}+\frac{1}{19}-\frac{1}{21}\right)\)

\(=2\left(1-\frac{1}{21}\right)\)

\(=2\cdot\frac{20}{21}=\frac{40}{21}\)

\(\left(c\right)\frac{4}{2\cdot4}+\frac{4}{4\cdot6}+\frac{4}{6\cdot8}+...+\frac{4}{16\cdot18}+\frac{4}{18\cdot20}\)

\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}=\frac{9}{10}\)

6 tháng 8 2020

cảm ơn  bạn

6 tháng 11 2016

bài 2

Ta có:

\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)

Trường hợp 1: \(x-102>0\Rightarrow x>102\)

\(2-x>0\Rightarrow x< 2\)

\(\Rightarrow102< x< 2\left(loại\right)\)

Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)

\(2-x< 0\Rightarrow x>2\)

\(\Rightarrow2< x< 102\left(nhận\right)\)

Vậy GTNN của A là -100 đạt được khi 2<x<102.

6 tháng 11 2016

trị tuyệt đối phải bằng dương chứ sao bằng âm được