\(2^{x+2}-2^x=96\)
\(7^{x+2}+2.7^{x-1}=345\)
\(\left(2x-1\right)^6=\left(2x-1\right)^8\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(3^{-2}.3^2.27^x=\frac{1}{3}\)
\(\Rightarrow3^{-2+2}.\left(3^3\right)^x=\frac{1}{3}\)
\(\Rightarrow3^0.3^{3x}=3^{-1}\)
\(\Rightarrow3^{3x}=3^{-1}\)
=> 3x=-1
=> x=\(-\frac{1}{3}\)
b.\(7^{x+2}+2.7^{x-1}=345\)
\(\Rightarrow7^{x-1}.\left(7^3+2\right)=345\)
\(\Rightarrow7^{x-1}.345=345\)
=> 7x-1=345 : 345
=> 7x-1=1
=> 7x-1=70
=> x-1=0
Vậy x=1.
c.\(\left(2x-1\right)^6=\left(2x-1\right)^8\)
\(\Rightarrow\left(2x-1\right)\in\left\{-1;0;1\right\}\)
=> 2x-1=-1 hoặc 2x-1=0 hoặc 2x-1=1
=> 2x=0 hoặc 2x=1 hoặc 2x=2
=> x=0 hoặc x=\(\frac{1}{2}\) hoặc x=1
Vậy \(x\in\left\{0;\frac{1}{2};1\right\}\)
a) \(\left(2x+1\right)^2=25\)
=> \(2x+1=5\) và \(2x+1=-5\)
=> \(2x=5-1=4\) và \(2x=-5-1=-6\)
=> \(x=4:2=2\) và \(x=-6:2=-3\)
b) \(\left(x-1\right)^3=-125\)
=> \(x-1=-5\Rightarrow x=-5+1=-4\)
c) \(2^{x+2}-2^x=96\)
=> \(2^x\cdot2^2-2^x\cdot1=96\)
=> \(2^x\left(2^2-1\right)=96\)
=> \(2^x\cdot3=96\Rightarrow2^x=96:2=32\)
=> \(x=5\)
d) \(7^{x+2}+2\cdot7^{x-1}=345\)
=> \(7^x\cdot7^2+2\cdot7^x:7=345\)
=> \(7^x\cdot7^2+2\cdot7^x\cdot\frac{1}{7}=345\)
=> \(7^x\cdot\left(7^2+2\cdot\frac{1}{7}\right)=345\)
=> \(7^x\cdot\frac{345}{7}=345\)
=> \(7^x=345:\frac{345}{7}=7\)
=> \(x=1\)
\(\left(2x+1\right)^2=25\)
\(\left(2x+1\right)^2=5^2=\left(-5\right)^2\)
\(TH1:\left(2x+1\right)^2=5^2\)
\(2x+1=5\)
\(x=\left(5-1\right):2\)
\(x=4\)
\(TH2:\left(2x+1\right)^2=\left(-5\right)^2\)
\(2x+1=-5\)
\(x=\left[\left(-5\right)-1\right]:2\)
\(x=-3\)
Vậy x=2 hoặc x= -3
b/100x+(1+2+3+...+100)=205550
100x+5050=205550
100x=205550-5050
100x=200500
x=200500/100
x=2005
d/(3x-24).75=2.76.1/20090
(3x-24).75=2.76.1
(3x-24)=2.76:75
(3x-24)=2.7
3x-16=14
3x=14+16
3x=30
x=30/10=3
1) Ta có: \(\left(3-x^2\right)+6-2x=0\)
\(\Leftrightarrow3-x^2+6-2x=0\)
\(\Leftrightarrow-x^2-2x+9=0\)
\(\Leftrightarrow x^2+2x-9=0\)
\(\Leftrightarrow x^2+2x+1=10\)
\(\Leftrightarrow\left(x+1\right)^2=10\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=\sqrt{10}\\x+1=-\sqrt{10}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{10}-1\\x=-\sqrt{10}-1\end{matrix}\right.\)
Vậy: \(S=\left\{\sqrt{10}-1;-\sqrt{10}-1\right\}\)
2) Ta có: \(5\left(2x-1\right)+7=4\left(2-x\right)+2\)
\(\Leftrightarrow10x-5+7=8-4x+2\)
\(\Leftrightarrow10x+4x=8+2+5-7\)
\(\Leftrightarrow14x=8\)
\(\Leftrightarrow x=\dfrac{4}{7}\)
Vậy: \(S=\left\{\dfrac{4}{7}\right\}\)
1: =>(x+3)(x-5)=0
=>x=5 hoặc x=-3
2: =>(x-1)(5x-1)=0
=>x=1/5 hoặc x=1
5: =>(x-4)*x=0
=>x=0 hoặc x=4
10: =>(x+5)(x-3)=0
=>x=3 hoặc x=-5
9: =>(x-2)(x-4)=0
=>x=2 hoặc x=4
7: =>(x-6)(2x-1)=0
=>x=1/2 hoặc x=6
8: =>(2x-1)(3x-12)=0
=>x=4 hoặc x=1/2
1) \(\left(x-2\right)\left(3+2x\right)-2x\left(x+5\right)=6\)
\(3x+2x^2-6-4x-2x^2-10x-6=0\)
\(-11x=12\)
\(x=-\dfrac{12}{11}\)
2) \(x^2-4-\left(x-5\right)\left(x-2\right)=0\)
\(\left(x-2\right)\left(x+2\right)-\left(x-5\right)\left(x-2\right)=0\)
\(\left(x-2\right)\left(x+2-x+5\right)=0\)
\(7\left(x-2\right)=0\)
\(\Leftrightarrow x=2\)
1, \(3x+2x^2-6-4x-2x^2-10x=0\Leftrightarrow-11x-6=0\Leftrightarrow x=-\dfrac{6}{11}\)
2, \(\left(x-2\right)\left(x+2\right)-\left(x-5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2-x+5\right)=0\Leftrightarrow x=2\)
3, bạn xem lại đề
5, đk x khác -4 ; 4
\(96=\left(2x-1\right)\left(x-4\right)+\left(3x-1\right)\left(x+4\right)-6\left(x^2-16\right)\)
\(\Leftrightarrow96=2x^2-9x+4+3x^2+11x-4-6x^2+96\)
\(\Leftrightarrow-x^2+2x=0\Leftrightarrow-x\left(x-2\right)=0\Leftrightarrow x=0;x=2\)(tm)
\(\left(2x-1\right)^6=\left(2x-1\right)^8\)
\(\Leftrightarrow\left(2x-1\right)^6-\left(2x-1\right)^8=0\)
\(\Leftrightarrow\left(2x-1\right)^6\left[1-\left(2x-1\right)^2\right]=0\)
\(\Rightarrow2x-1=0\)hoặc \(2x-1=1\)hoặc \(2x-1=-1\)
\(\Rightarrow x=\frac{1}{2}\)hoặc \(x=1\)hoặc \(x=0\)