Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(3^{-2}.3^2.27^x=\frac{1}{3}\)
\(\Rightarrow3^{-2+2}.\left(3^3\right)^x=\frac{1}{3}\)
\(\Rightarrow3^0.3^{3x}=3^{-1}\)
\(\Rightarrow3^{3x}=3^{-1}\)
=> 3x=-1
=> x=\(-\frac{1}{3}\)
b.\(7^{x+2}+2.7^{x-1}=345\)
\(\Rightarrow7^{x-1}.\left(7^3+2\right)=345\)
\(\Rightarrow7^{x-1}.345=345\)
=> 7x-1=345 : 345
=> 7x-1=1
=> 7x-1=70
=> x-1=0
Vậy x=1.
c.\(\left(2x-1\right)^6=\left(2x-1\right)^8\)
\(\Rightarrow\left(2x-1\right)\in\left\{-1;0;1\right\}\)
=> 2x-1=-1 hoặc 2x-1=0 hoặc 2x-1=1
=> 2x=0 hoặc 2x=1 hoặc 2x=2
=> x=0 hoặc x=\(\frac{1}{2}\) hoặc x=1
Vậy \(x\in\left\{0;\frac{1}{2};1\right\}\)
a) \(\left(2x+1\right)^2=25\)
=> \(2x+1=5\) và \(2x+1=-5\)
=> \(2x=5-1=4\) và \(2x=-5-1=-6\)
=> \(x=4:2=2\) và \(x=-6:2=-3\)
b) \(\left(x-1\right)^3=-125\)
=> \(x-1=-5\Rightarrow x=-5+1=-4\)
c) \(2^{x+2}-2^x=96\)
=> \(2^x\cdot2^2-2^x\cdot1=96\)
=> \(2^x\left(2^2-1\right)=96\)
=> \(2^x\cdot3=96\Rightarrow2^x=96:2=32\)
=> \(x=5\)
d) \(7^{x+2}+2\cdot7^{x-1}=345\)
=> \(7^x\cdot7^2+2\cdot7^x:7=345\)
=> \(7^x\cdot7^2+2\cdot7^x\cdot\frac{1}{7}=345\)
=> \(7^x\cdot\left(7^2+2\cdot\frac{1}{7}\right)=345\)
=> \(7^x\cdot\frac{345}{7}=345\)
=> \(7^x=345:\frac{345}{7}=7\)
=> \(x=1\)
\(\left(2x+1\right)^2=25\)
\(\left(2x+1\right)^2=5^2=\left(-5\right)^2\)
\(TH1:\left(2x+1\right)^2=5^2\)
\(2x+1=5\)
\(x=\left(5-1\right):2\)
\(x=4\)
\(TH2:\left(2x+1\right)^2=\left(-5\right)^2\)
\(2x+1=-5\)
\(x=\left[\left(-5\right)-1\right]:2\)
\(x=-3\)
Vậy x=2 hoặc x= -3
a)
(2x+1)2=25
=> \(\left[\begin{array}{nghiempt}2x+1=5\\2x+1=-5\end{array}\right.\)
=>\(\left[\begin{array}{nghiempt}2x=4\\2x=-6\end{array}\right.\Rightarrow\left[\begin{array}{nghiempt}x=2\\x=-3\end{array}\right.\)
d)
(x-1)3=-125
=> x-1=-5
=> x=-4
còn câu b và c bạn viết đề rõ hơn nha
\(c,\Rightarrow\left[{}\begin{matrix}-2\left(x+2\right)+\left(4-x\right)=11\left(x< -2\right)\\2\left(x+2\right)+\left(4-x\right)=11\left(-2\le x\le4\right)\\2\left(x+2\right)+\left(x-4\right)=11\left(x>4\right)\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{11}{3}\left(tm\right)\\x=3\left(tm\right)\\x=\dfrac{11}{3}\left(ktm\right)\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{11}{3}\end{matrix}\right.\)
\(a,\Rightarrow\left[{}\begin{matrix}x+\dfrac{5}{2}=3x+1\\x+\dfrac{5}{2}=-3x-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=-\dfrac{7}{8}\end{matrix}\right.\)
a) \(\left|x\left(x-7\right)\right|=x\)
\(\Rightarrow\orbr{\begin{cases}x\left(x-7\right)=x\\x\left(x-7\right)=-x\end{cases}\Leftrightarrow\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=8\\x=6\end{cases}}}\)
b) \(\left|x-1,1\right|+\left|x+1,2\right|+\left|x+1,3\right|+\left|x+1,4\right|=5x\)
\(\Rightarrow x-1,1+x+1,2+x+1,3+x+1,4=5x\)
\(\Leftrightarrow4x+2,8=5x\)
\(\Leftrightarrow x=2,8\)
\(a.\)\(\left|x.\left(x-7\right)\right|=x\)( Đk: \(x\ge0\))
\(\Leftrightarrow\orbr{\begin{cases}x.\left(x-7\right)=x\\x.\left(x-7\right)=-x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-7=x:x\\x-7=-x:x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1+7\\x=-1+7\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=8\\x=6\end{cases}}\)
\(b.\)\(\left|x-1,1\right|+\left|x+1,2\right|+\left|x+1,3\right|+\left|x+1,4\right|=5x\)( Đk: \(5x\ge0\Leftrightarrow x\ge0\))
\(\Rightarrow x-1,1+x+1,2+x+1,3+x+1,4=5x\)
\(\Leftrightarrow\left(x+x+x+x\right)+\left(-1,1+1,2+1,3+1,4\right)=5x\)
\(\Leftrightarrow4x+2,8=5x\)
\(\Leftrightarrow2,8=5x-4x\)
\(\Leftrightarrow x=2,8\)
\(c.\)\(7^{x+2}+2.7^{x-1}=345\)
\(\Leftrightarrow7^{x-1}.7^{x+3}+2.7^{x-1}=345\)
\(\Leftrightarrow7^{x-1}.\left(7^{x+3}+2\right)=345\)
\(......................\)
Đến đây mk ko bt làm nữa, tự lm nhé !
a: =>|1/3x|=3:2,7=10/9
=>1/3=10/9 hoặc 1/3x=-10/9
=>x=10/3 hoặc x=-10/3
b: =>2|2x-1|=19-7=12
=>|2x-1|=6
=>2x-1=6 hoặc 2x-1=-6
=>2x=7 hoặc 2x=-5
=>x=7/2 hoặc x=-5/2
c: |x|>2
=>x>2 hoặc x<-2
\(9^x:3^x=3^7\)
\(\Rightarrow9:3^x=3^7\)
\(\Rightarrow3^x=3^7\)
\(\Rightarrow x=7\)