K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2023

a: Xét tứ giác MAON có \(\widehat{MAO}+\widehat{MNO}=90^0+90^0=180^0\)

nên MAON là tứ giác nội tiếp đường tròn đường kính MO

=>ĐƯờng tròn đi qua bốn điểm A,M,N,O là đường tròn đường kính MO

b: Xét (O) có

MA,MN là tiếp tuyến

Do đó: MA=MN

=>M nằm trên đường trung trực của AN(1)

OA=ON

=>O nằm trên đường trung trực của AN(2)

Từ (1) và (2) suy ra OM là đường trung trực của AN

=>OM\(\perp\)AN(3)

Xét (O) có
ΔANB nội tiếp

AB là đường kính

Do đó: ΔANB vuông tại N

=>AN\(\perp\)NB

=>AN\(\perp\)BE(4)

Từ (3) và (4) suy ra OM//BE

c: Xét ΔMAO vuông tại A và ΔEOB vuông tại O có

OA=OB

\(\widehat{MOA}=\widehat{EBO}\)(hai góc đồng vị, MO//EB)

Do đó: ΔMAO=ΔEOB

=>MO=EB

Xét tứ giác BOME có

OM//BE

OM=BE

Do đó: BOME là hình bình hành

=>OB//EM và OB=ME

OB//ME

A\(\in\)OB

Do đó: OA//ME

OA=OB

OB=ME

Do đó: OA=ME

Xét tứ giác AOEM có

AO//EM

AO=EM

Do đó: AOEM là hình bình hành

Hình bình hành AOEM có \(\widehat{MAO}=90^0\)

nên AOEM là hình chữ nhật

d: ΔMAO vuông tại A

=>\(MA^2+OA^2=MO^2\)

=>\(MO^2=R^2+\left(R\sqrt{3}\right)^2=4R^2\)

=>MO=2R

=>EB=2R

Xét ΔEOB vuông tại O có \(cosB=\dfrac{BO}{EB}=\dfrac{1}{2}\)

nên góc B=60 độ

ME//AB

=>\(\widehat{MEB}+\widehat{B}=180^0\)

=>\(\widehat{MEB}=180^0-60^0=120^0\)

AOEM là hình chữ nhật

=>\(\widehat{EMA}=\widehat{MAO}=90^0\)

=>\(\widehat{EMA}=\widehat{MAB}=90^0\)

Diện tích tứ giác AEMB là:

\(S_{AEMB}=\dfrac{1}{2}\left(ME+AB\right)\cdot AM=\dfrac{1}{2}\cdot R\sqrt{3}\left(R+2R\right)=\dfrac{R\sqrt{3}}{2}\cdot3R=3\sqrt{3}\cdot\dfrac{R^2}{2}\)

a: Xét tứ giác KAOM có 

\(\widehat{KAO}+\widehat{KMO}=180^0\)

Do đó: KAOM là tứ giác nội tiếp

b: Xét (O) có

KA là tiếp tuyến

KM là tiếp tuyến

Do đó: KA=KM

hay K nằm trên đường trung trực của AM(1)

Ta có: OA=OM

nên O nằm trên đường trung trực của AM(2)

Từ (1) và (2) suy ra OK là đường trung trực của AM

hay OK\(\perp\)AM

Xét ΔOAK vuông tại A có AI là đường cao

nên \(OI\cdot OK=OA^2\)

8 tháng 6 2017

a, HS tự làm

b, Ta có OP ⊥ AM, BMAM => BM//OP

c, chứng minh ∆AOP = ∆OBN => OP=BN

lại có BN//OP do đó OPNB là hình bình hành

d, Ta có ONPI, PMJO mà PM ∩ ON = I => I là trực tâm ∆POJ => JIPO(1)

Chứng minh PAON hình chữ nhật => K trung điểm PO

Lại có  A P O ^ = O P I ^ = I O P ^ => ∆IPO cân tại I => IKPO (2)

Từ (1),(2) => J,I,K thẳng hàng

2 tháng 1 2021

Vì sao A P O ^ = O P I ^ = I O P ^ v bn???

 

1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AMa) Chứng minh AB = BCb) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyếnMC với đường tròn (C là tiếp điểm).a) Chứng minh OM // BCb) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hànhc) Chứng minh...
Đọc tiếp

1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AM
a) Chứng minh AB = BC
b) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.
2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).
a) Chứng minh OM // BC
b) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hành
c) Chứng minh COMN là hình thang cân
3.Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).Kẻ CH vuông góc với AB tại H
a) Chứng minh CA là phân giác góc HCM
b) Kẻ CH vuông góc Ax tại K, gọi I là giao điểm của AC và HK. Chứng minh tam giác AIO vuông
c) Chứng minh 3 điểm M, I, O thẳng hàng

0
14 tháng 3 2021

1: Ta có \(\widehat{KAO}=\widehat{KMO}=90^o\) nên tứ giác KAOM nội tiếp.

2: Theo hệ thức lượng trong tam giác vuông ta có \(OI.OK=OA^2=R^2\)

3: Phần thuận: Dễ thấy H thuộc KI.

Ta có \(\widehat{AHO}=90^o-\widehat{HAI}=\widehat{AMK}=\widehat{AOK}\) nên tam giác AHO cân tại A.

Do đó AH = AO = R.

Suy ra H thuộc (A; R) cố định.

Phần đảo cm tương tự.

Vậy...

12 tháng 10 2023

loading...  loading...  loading...  

29 tháng 5 2017

a) Nối O với N. Ta có \(\widehat{OAN}\)=\(\widehat{OBN}\)=\(\widehat{ONM}\)=90° →các góc này nội tiếp chắn nửa đường tròn đường kính ON →O,A,B,N,M cùng nằm trên đường tròn đường kính ON.

b) Nối A với M. Xét tứ giác nội tiếp OANB(chứng minhnội tiếp trước)ta có \(\widehat{AMO}\)=\(\frac{1}{2}\)\(\widebat{OA}\);\(\widehat{OAB}\)=\(\frac{1}{2}\)\(\widebat{OB}\) mà 

  • \(\widebat{OA}\)=\(\widebat{OB}\)\(\widehat{AMO}\)=.\(\widehat{OAB}\)=\(\widehat{OAI}\)Xét tam giác OAI và tam giác OMA: \(\widehat{O}\)chung ,\(\widehat{OAI}\)=\(\widehat{AMO}\)\(\Rightarrow\)hai tam giác đồng dạng (g.g) \(\Rightarrow\)\(\frac{OI}{OA}\)=\(\frac{OA}{OM}\)\(\Leftrightarrow\)OI.OM=\(^{OA^2}\)=R​bình.​
  • c)
30 tháng 12 2023

a: Xét (O) có

MA,MC là các tiếp tuyến

Do đó: MA=MC

=>\(\widehat{MAC}=\widehat{MCA}\)

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>AC\(\perp\)CB tại C

=>AC\(\perp\)BD tại C

=>ΔACD vuông tại C

Ta có: \(\widehat{MDC}+\widehat{MAC}=90^0\)(ΔACD vuông tại C)

\(\widehat{MCD}+\widehat{MCA}=\widehat{DCA}=90^0\)

mà \(\widehat{MAC}=\widehat{MCA}\)

nên \(\widehat{MDC}=\widehat{MCD}\)

=>MC=MD

mà MC=MA

nên MA=MD

=>M là trung điểm của AD

b: Xét (O) có

MC,MA là các tiếp tuyến

Do đó: OM là phân giác của góc AOC

=>\(\widehat{AOC}=2\cdot\widehat{MOC}\)

Ta có: tia OC nằm giữa hai tia OM và ON

=>\(\widehat{MOC}+\widehat{NOC}=\widehat{MON}=90^0\)

=>\(\widehat{NOC}=90^0-\widehat{MOC}\)

Ta có: \(\widehat{COA}+\widehat{COB}=180^0\)(hai góc kề bù)

=>\(2\cdot\widehat{COM}+\widehat{COB}=2\cdot90^0=2\cdot\widehat{COM}+2\cdot\widehat{CON}\)

=>\(\widehat{COB}=2\cdot\widehat{CON}\)

=>ON là phân giác của góc COB

Xét ΔOBN và ΔOCN có

OB=OC

\(\widehat{BON}=\widehat{CON}\)

ON chung

Do đó: ΔOBN=ΔOCN

=>\(\widehat{OBN}=\widehat{OCN}=90^0\)

=>NB là tiếp tuyến của (O)