Tam giác ABC vuông cân tại A ,M là 1 điểm trên AC ,I là trung điểm của BM ,N là trung điểm của AC .Đường thẳng đi qua A và vuông góc với IN căt đường thẳng đi qua C và vuông góc với AC tại E .chứng minh IN=1/2 AEtam giác ABC vuông cân tại A ,M là 1 điểm trên AC ,I là trung điểm của BM ,N là trung điểm của AC .Đường thẳng đi qua A và vuông góc với IN căt đường thẳng đi qua C và vuông góc với AC tại E .chứng minh IN=1/2 AE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ \(BN\perp AH\left(N\in AC\right)\)
Khi đó \(BN//IK\)(cùng vuông góc với AH)
Kết hợp với I là trung điểm của BM suy ra IK là đường trung bình của \(\Delta MBC\)
\(\Rightarrow\)K là trung điểm của MN
hay MK = NK kết hợp giả thiết AK = CK suy ra AN = CM (cộng theo vế) (1)
Xét \(\Delta ABN\)và \(\Delta CAH\)có:
AB = CA (gt)
\(\widehat{ABN}=\widehat{CAH}\)(cùng phụ với \(\widehat{BAH}\))
Do đó \(\Delta ABN=\Delta CAH\left(cgv-gnk\right)\)
\(\Rightarrow AN=CH\)(hai cạnh tương ứng) (2)
Từ (1) và (2) suy ra CH = CM
Mà \(\widehat{HCM}=90^0\)suy ra \(\Delta HCM\)vuông cân tại C
Vậy \(\widehat{HMC}=45^0\)
a) Ta có:
\(\left\{{}\begin{matrix}BH\perp AC\\KC\perp AC\end{matrix}\right.\) ⇒ \(BH\text{//}KC\)
\(\left\{{}\begin{matrix}CH\perp AB\\BK\perp AB\end{matrix}\right.\) ⇒ \(CH\text{//}BK\)
\(Xét\) \(tứ\) \(giác\) \(BKCH\) \(có:\) \(\left\{{}\begin{matrix}BH\text{//}KC\\CH\text{//}BK\end{matrix}\right.\)
⇒ Tứ giác \(BKCH\) là hình hình hành. Mà M là trung điểm của đường chéo BC
⇒ \(\left\{{}\begin{matrix}H,M,K_{ }thẳng_{ }hàng\\HM=MK\end{matrix}\right.\)
Xét \(\Delta AHK\) có: \(\left\{{}\begin{matrix}AI=IK\left(gt\right)\\HM=MK\left(cmt\right)\end{matrix}\right.\)
⇒ \(IM\) là đường trung bình của \(\Delta AHK\)
⇒ \(IM=\dfrac{1}{2}AH\) \(\left(ĐPCM\right)\)
c)
Ta có:
\(\dfrac{S_{\Delta HBC}}{S_{\Delta ABC}}=\dfrac{\dfrac{1}{2}.HD.BC}{\dfrac{1}{2}.AD.BC}=\dfrac{HD}{AD}\)
\(\dfrac{S_{\Delta HAC}}{S_{\Delta ABC}}=\dfrac{\dfrac{1}{2}.HE.AC}{\dfrac{1}{2}.BE.AC}=\dfrac{HE}{BE}\)
\(\dfrac{S_{\Delta HBA}}{S_{\Delta ABC}}=\dfrac{\dfrac{1}{2}.HF.AB}{\dfrac{1}{2}.CF.AB}=\dfrac{HF}{CF}\)
⇒ \(\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}=\dfrac{S_{\Delta HBC}+S_{\Delta HAC}+S_{\Delta HAB}}{S_{\Delta ABC}}=\dfrac{S_{\Delta ABC}}{S_{\Delta ABC}}\)
⇔ \(\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}=1\) \(\left(ĐPCM\right)\)