K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Ta có: AM<AB nên \(0 < x < 4\)

Diện tích hình tròn đường kính AB là \({S_0} = \pi .{\left( {\frac{{AB}}{2}} \right)^2} = 4\pi \)

Diện tích hình tròn đường kính AM là \({S_1} = \pi .{\left( {\frac{{AM}}{2}} \right)^2} = \frac{{\pi .{x^2}}}{4}\)

Diện tích hình tròn đường kính MB là \({S_2} = \pi .{\left( {\frac{{MB}}{2}} \right)^2} = \pi .\frac{{{{\left( {4 - x} \right)}^2}}}{4}\)

Diện tích phần hình phẳng nằm trong hình tròn lớn và nằm ngoài hai hình tròn nhỏ là \(S(x) = {S_0} - {S_1} - {S_2} = 4\pi  - \frac{{{x^2}}}{4}\pi  - \frac{{{{\left( {4 - x} \right)}^2}}}{4}\pi  = \frac{{ - {x^2} + 4x}}{2}\pi \)

Vì diện tich S(x) không vượt quá 1 nửa tổng diện tích hai hình tròn nhỏ nên:

\(S(x) \le \frac{1}{2}\left( {{S_1} + {S_2}} \right)\)

Khi đó : \(\frac{{ - {x^2} + 4x}}{2}\pi  \le \frac{1}{2}.\frac{{{x^2} - 4x + 8}}{2}\pi \)

\( \Leftrightarrow  - {x^2} + 4x \le \frac{{{x^2} - 4x + 8}}{2}\)

\( \Leftrightarrow  - 2{x^2} + 8x \le {x^2} - 4x + 8\)

\( \Leftrightarrow 3{x^2} - 12x + 8 \ge 0\)

Xét tam thức \(3{x^2} - 12x + 8\) có \(\Delta ' = 12 > 0\) nên f(x) có 2 nghiệm phân biệt \({x_1} = \frac{{6 - 2\sqrt 3 }}{3};{x_2} = \frac{{6 + 2\sqrt 3 }}{3}\)

Mặt khác a=3>0, do đó ta có bảng xét dấu:

Do đó \(f(x) \ge 0\) với mọi \(x \in \left( { - \infty ;\frac{{6 - 2\sqrt 3 }}{3}} \right] \cup \left[ {\frac{{6 + 2\sqrt 3 }}{3}; + \infty } \right)\)

Mà 0<x<4 nên \(x \in \left( { - \infty ;\frac{{6 - 2\sqrt 3 }}{3}} \right] \cup \left[ {\frac{{6 + 2\sqrt 3 }}{3}; + \infty } \right)\)

28 tháng 5 2021

Do I là trực tâm của tam giác KAB nên K, I, H thẳng hàng.

Tứ giác AMIH nội tiếp nên \(\widehat{MHI}=\widehat{MAI}\).

Tương tự, \(\widehat{NHI}=\widehat{NBI}\).

Lại có \(\widehat{MAI}=\widehat{NBI}=90^o-\widehat{AKB}\) nên \(\widehat{MHI}=\widehat{NHI}\).

Vậy HK là phân giác của góc MHN.

30 tháng 11 2023

A B H M O D I K

a/

Ta có \(\widehat{AMB}=90^o\) (góc nt chắn nửa đường tròn)

Xét tg vuông AMB có

\(MH^2=AH.BH\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền = tích giữa các hình chiếu của 2 cạnh góc vuông trên cạnh huyền)

\(\Rightarrow BH=\dfrac{MH^2}{AH}=\dfrac{4^2}{2}=8cm\)

\(\Rightarrow AB=AH+BH=2+8=10cm\)

\(MA^2=AH.AB\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

\(\Rightarrow MA=\sqrt{AH.AB}=\sqrt{2.10}=2\sqrt{5}cm\)

\(MB^2=BH.AB\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

\(\Rightarrow MB=\sqrt{BH.AB}=\sqrt{8.10}=4\sqrt{5}cm\)

b/ Không rõ bạn hỏi biểu thức nào?

c/

Ta có \(OD\perp AM\) (2 tiếp tuyến cùng xuất phát từ 1 điểm ngoài hình tròn thì đường nối điểm đó với tâm đường tròn vuông góc với dây cung nối 2 tiếp điểm)

Xét tg vuông AIO 

Gọi K là trung điểm của AO => AK=OK

\(\Rightarrow IK=AK=OK=\dfrac{1}{2}AO\) không đổi (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)

Ta có

A; O cố định => K cố định; IK không đổi => khi M di chuyển trên nửa (O) => I chạy trên nửa đường tròn tâm K

 

 

 

 

20 tháng 5 2020

Goi y cau d: Keo dai IP cat AN tai F, P se di dong tren dt dk FB co dinh

24 tháng 5 2020

cảm ơn cậu, tớ giải được rồi

7 tháng 5 2017

Chọn C

Cách giải:

a: OI+IB=OB

=>OI=OB-IB

=>\(OI=R-r\)

=>Hai đường tròn (O) và (I) tiếp xúc trong với nhau tại B

b: Ta có: ΔODE cân tại O

mà OH là đường cao

nên H là trung điểm của DE

Xét tứ giác ADCE có

H là trung điểm chung của AC và DE

=>ADCE là hình bình hành

Hình bình hành ADCE có AC\(\perp\)DE

nên ADCE là hình thoi

c: Xét (I) có

ΔCKB nội tiếp

CB là đường kính

Do đó: ΔCKB vuông tại K

=>CK\(\perp\)KB tại K

=>CK\(\perp\)DB tại K

Xét (O) có

ΔAEB nội tiếp

AB là đường kính

Do đó: ΔAEB vuông tại E

=>AE\(\perp\)BE tại E

Ta có: ADCE là hình thoi

=>AE//CD

mà AE\(\perp\)EB

nên CD\(\perp\)EB

Xét ΔDEB có

BH,DC là các đường cao

BH cắt DC tại C

Do đó: C là trực tâm của ΔDEB

=>EC\(\perp\)DB

mà CK\(\perp\)DB

và EC,CK có điểm chung là C

nên E,C,K thẳng hàng

d:

Xét (O) có

ΔADB nội tiếp

AB là đường kính

Do đó: ΔADB vuông tại D

Xét tứ giác DHCK có \(\widehat{DHC}+\widehat{DKC}=90^0+90^0=180^0\)

nên DHCK là tứ giác nội tiếp

=>\(\widehat{HKC}=\widehat{HDC}\)

mà \(\widehat{HDC}=\widehat{ADH}\)(DH là phân giác của góc ADC do ADCE là hình thoi)

nên \(\widehat{HKC}=\widehat{ADH}\)

mà \(\widehat{ADH}=\widehat{ABD}\left(=90^0-\widehat{DAB}\right)\)

nên \(\widehat{HKC}=\widehat{ABD}\)

Ta có: IC=IK

=>ΔICK cân tại I

=>\(\widehat{ICK}=\widehat{IKC}\)

\(\widehat{HKI}=\widehat{HKC}+\widehat{IKC}\)

\(=\widehat{ABD}+\widehat{ICK}\)

\(=\widehat{KBC}+\widehat{KCB}=90^0\)

=>HK\(\perp\)KI tại K

=>HK là tiếp tuyến tại K của (I)

15 tháng 1 2018

Đáp án B

Ta có diện tích tam giác cong ABC bằng 4 lần diện tích tam giác cong ADO

Vậy diện tích hình tam giác cong  là: