CHỨNG MINH:
\(7^{8n+2}=3^{8n+3}+2^{8n+4}+2022⋮10.\)
cứu em với thứ bảy e nộp r các thầy cô anh chị ơiiii
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)n = 1 ⇒ 31 = 3 < 8 = 8.1
n = 2 ⇒ 32 = 9 < 16 = 8.2
n = 3 ⇒ 33 = 27 > 24 = 8.3
n = 4 ⇒ 34 = 81 > 32 = 8.4
n = 5 ⇒ 35 = 243 > 40 = 8.5
b) Dự đoán kết quả tổng quát: 3n > 8n với mọi n ≥ 3
- n = 3, bất đẳng thức đúng
- Giả sử bất đẳng thức đúng với n = k ≥ 3, nghĩa là:
3k > 8k
Ta phải chứng minh rằng bất đẳng thức cũng đúng với n = k + 1, tức là:
3(k + 1) > 8(k + 1)
Thật vậy, từ giả thiết quy nạp ta có:
3(k + 1) = 3k.3 > 8k.3 = 24k = 8k + 16k
k ≥ 3 ⇒ 16k ≥ 16.3 = 48 > 8
Suy ra: 3(k + 1) > 8k + 8 = 8(k + 1)
Vậy bất đẳng thức đúng với mọi n ≥ 3
a: Gọi d=ƯCLN(2n+7;2n+3)
=>2n+7 chia hết cho d và 2n+3 chia hết cho d
=>2n+7-2n-3 chia hết cho d
=>4 chia hết cho d
mà 2n+7 lẻ
nên d=1
=>PSTG
b: Gọi d=ƯCLN(6n+5;8n+7)
=>4(6n+5)-3(8n+7) chia hết cho d
=>-1 chia hết cho d
=>d=1
=>PSTG
Bài giải
a, Ta có : \(8n+8=4\left(n+2\right)\text{ }⋮\text{ }4\text{ với }\forall n\in N\)
\(\Rightarrow\)Không có số tự nhiên n nào thỏa mãn đề bài
b, Gọi \(ƯCLN\left(5n+7\text{ ; }7n+10\right)=d\)
\(\Leftrightarrow\hept{\begin{cases}\text{ }7n+10\text{ }⋮\text{ }d\\5n+7\text{ }⋮\text{ }d\end{cases}}\text{ }\Rightarrow\hept{\begin{cases}\text{ }5\left(7n+10\right)\text{ }⋮\text{ }d\text{ }\\7\left(5n+7\right)\text{ }⋮\text{ }d\end{cases}}\Rightarrow\hept{\begin{cases}\text{ }35n+50\text{ }⋮\text{ }d\\35n+49\text{ }\text{ }\text{ }⋮\text{ }d\end{cases}}\)
\(\Rightarrow\text{ }\left(35n+50\right)-\left(35n+49\right)\text{ }⋮\text{ }d\)
\(\Rightarrow\text{ }1\text{ }⋮\text{ }d\text{ }\Rightarrow\text{ }d=1\)
\(\Rightarrow\text{ }5n+7\text{ và }7n+10\) là 2 số nguyên tố cùng nhau
Vì 2n+3 là số lẻ
và 8n+10 là số chẵn
nên 2n+3 và 8n+10 là hai số nguyên tố cùng nhau
Gọi d=ƯCLN(4n+3;8n+2)
=>\(\left\{{}\begin{matrix}4n+3⋮d\\8n+2⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}8n+6⋮d\\8n+2⋮d\end{matrix}\right.\)
=>\(8n+6-8n-2⋮d\)
=>\(4⋮d\)
mà 4n+3 lẻ
nên d=1
=>ƯCLN(4n+3;8n+2)=1
=>\(\dfrac{4n+3}{8n+2}\) là phân số tối giản
Gọi \(d=ƯC\left(4n+3;8n+2\right)\) với \(d\in N\)*
\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\8n+2⋮d\end{matrix}\right.\)
\(\Rightarrow2\left(4n+3\right)-\left(8n+2\right)⋮d\)
\(\Rightarrow4⋮d\) \(\Rightarrow\left[{}\begin{matrix}d=1\\d=2\\d=4\end{matrix}\right.\)
Mặt khác do \(4n+3\) luôn lẻ, mà các số tự nhiên lẻ chỉ có các ước lẻ \(\Rightarrow d\) là số lẻ
\(\Rightarrow d=1\)
\(\Rightarrow4n+3\) và \(8n+2\) nguyên tố cùng nhau
\(\Rightarrow\dfrac{4n+3}{8n+2}\) là phân số tối giản
Mình cũng lớp 6 nè, nhưng mình bận quá không có thời gian để nghĩ,sorry bạn nhìu nhoa=)))