Dùng đồng hồ đo thời gian có độ chia nhỏ nhất đến 0,001 giây để đo 7 lần thời gian rơi tự do của một vật bắt đầu từ điểm A \(\left( {{v_A} = 0} \right)\) đến điểm B. Kết quả đo như sau:
0,398 0,399 0,408 0,410 0,406 0,405 0,402.
(Theo Bài tập Vật lý 10, Nhà xuất bản Giáo dục Việt Nam, 2018)
Hãy tính phương sai và độ lệch chuẩn cho mẫu số liệu này. Qua các đại lượng này, em có nhận xét gì về độ chính xác của phép đo trên?
Ta có giá trị trung bình:
\(\overline x = \frac{0,398 + 0,399 + 0,408 + 0,410 + 0,406 + 0,405 + 0,402}{7}\)
\( = 0,404\)
Ta có bảng sau:
Giá trị
Độ lệch
Bình phương độ lệch
0,398
0,006
\(3,{6.10^{ - 5}}\)
0,399
0,005
\(2,{5.10^{ - 5}}\)
0,408
0,004
\(1,{6.10^{ - 5}}\)
0,410
0,006
\(3,{6.10^{ - 5}}\)
0,406
0,002
\(0,{4.10^{ - 5}}\)
0,405
0,001
\(0,{1.10^{ - 5}}\)
0,402
0,002
\(0,{4.10^{ - 5}}\)
Tổng
\(12,{2.10^{ - 5}}\)
Phương sai:
\({s^2} = \frac{{12,{{2.10}^{ - 5}}}}{7} \approx 0,000017\)
Độ lệch chuẩn: \(s = \sqrt {{s^2}} \approx 4,{17.10^{ - 3}}\)
Phép đo có độ chính xác cao.