cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật, tâm O. Gọi H là trung điểm SC
a) vẽ hình
b) chứng minh BC ∥ (SAD)
c) chứng minh AB ∥ (SCD)
d) chứng minh OH ∥ (SAB)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
b: ABCD là hình chữ nhật
=>AB//CD và BC//AD
BC//AD
\(AD\subset\left(SAD\right)\)
BC không nằm trong mp(SAD)
Do đó: BC//(SAD)
c: AB//CD
\(CD\subset\left(SCD\right)\)
AB không nằm trong mp(SCD)
Do đó: AB//(SCD)
d: Xét ΔSAC có
O,H lần lượt là trung điểm của CA,CS
=>OH là đường trung bình của ΔSAC
=>OH//SA
OH//SA
\(SA\subset\left(SAB\right)\)
OH không nằm trong mp(SAB)
Do đó: OH//(SAB)
a:
b: ABCD là hình vuông
=>AB//CD và AD//BC
CD//AB
\(AB\subset\left(SAB\right)\)
CD không nằm trong mp(SAB)
Do đó: CD//(SAB)
c: AD//BC
\(BC\subset\left(SBC\right)\)
AD không nằm trong mp(SBC)
Do đó: AD//(SBC)
d: Xét ΔSAC có
M,I lần lượt là trung điểm của AS,AC
=>MI là đường trung bình
=>MI//SC
MI//SC
\(SC\subset\left(SCD\right)\)
MI không nằm trong mp(SCD)
Do đó: IM//(SCD)
a:
b: CD//AB(ABCD là hình vuông)
\(AB\subset\left(SAB\right)\)
CD không nằm trong(SAB)
Do đó: CD//(SAB)
c: AD//BC(ABCD là hình vuông)
\(BC\subset\left(SBC\right)\)
AD không nằm trong mp(SBC)
Do đó: AD//(SBC)
d: Xét ΔSAC có
M,I lần lượt là trung điểm của AS,AC
=>MI là đường trung bình của ΔSAC
=>MI//SC
mà \(SC\subset\left(SCD\right)\) và \(IM\) không nằm trong mp(SCD)
nên IM//(SCD)
a:
b: \(O\in AC\subset\left(SAC\right);M\in SC\subset\left(SAC\right)\)
Do đó: \(OM\subset\left(SAC\right)\)
c: Xét ΔCAS có
O,M lần lượt là trung điểm của CA,CS
=>OM là đường trung bình
=>OM//SA và OM=SA/2
OM//SA
\(SA\subset\left(SAD\right)\)
OM không nằm trong mp(SAD)
Do đó: OM//(SAD)
d: SA//MO
\(MO\subset\left(MBD\right)\)
SA không nằm trong mp(MBD)
Do đó: SA//(MBD)
e: Xét (OMD) và (SAD) có
OM//SA
\(D\in\left(OMD\right)\cap\left(SAD\right)\)
Do đó: (OMD) giao (SAD)=xy, xy đi qua D và xy//OM//SA
a:
b: \(O\in AC\subset\left(SAC\right)\)
\(M\in SC\subset\left(SAC\right)\)
Do đó: \(OM\subset\left(SAC\right)\)
c: Xét ΔSAC có
O,M lần lượt là trung điểm của CA,CS
=>OM là đường trung bình của ΔSAC
=>OM//SA và \(OM=\dfrac{1}{2}SA\)
OM//SA
SA\(\subset\left(SAD\right)\)
OM không thuộc mp(SAD)
Do đó: OM//(SAD)
d: SA//MO
\(MO\subset\left(MBD\right)\)
SA không thuộc mp(MBD)
Do đó: SA//(MBD)
e: Xét (OMD) và (SAD) có
\(D\in\left(OMD\right)\cap\left(SAD\right)\)
OM//SA
Do đó: \(\left(OMD\right)\cap\left(SAD\right)=xy,D\in xy\) và xy//OM//SA
a:
b: \(O\in AC\subset\left(SAC\right)\)
\(M\in SC\subset\left(SAC\right)\)
Do đó: \(OM\subset\left(SAC\right)\)
c: Xét ΔSAC có
O,M lần lượt là trung điểm của CA,CS
=>OM là đường trung bình của ΔSAC
=>OM//SA và \(OM=\dfrac{1}{2}SA\)
OM//SA
SA\(\subset\left(SAD\right)\)
OM không thuộc mp(SAD)
Do đó: OM//(SAD)
d: SA//MO
\(MO\subset\left(MBD\right)\)
SA không thuộc mp(MBD)
Do đó: SA//(MBD)
e: Xét (OMD) và (SAD) có
\(D\in\left(OMD\right)\cap\left(SAD\right)\)
OM//SA
Do đó: \(\left(OMD\right)\cap\left(SAD\right)=xy,D\in xy\) và xy//OM//SA
a: Xét ΔSAC có
I,H lần lượt là trung điểm của SC,SA
=>IH là đường trung bình của ΔSAC
=>IH//AC
IH//AC
AC\(\subset\)(ABCD)
IH không nằm trong mp(ABCD)
Do đó: IH//(ABCD)
b: XétΔSCD có
I,K lần lượt là trung điểm của SC,SD
=>IK là đường trung bình của ΔSCD
=>IK//CD
IK//CD
CD\(\subset\)(ABCD)
IK không nằm trong mp(ABCD)
Do đó: IK//(ABCD)
c: IK//(ABCD)
HI//(ABCD)
IK,HI nằm trong mp(HIK)
Do đó: (HIK)//(ABCD)
d: (HIK)//(ABCD)
=>BD//(HIK)
a: Xét ΔSAC có
H,I lần lượt là trung điểm của SA,SC
=>HI là đường trung bình
=>HI//AC
mà \(AC\subset\left(ABCD\right)\); HI không thuộc (ABCD)
nên HI//(ABCD)
b: Xét ΔSCD có
I,K lần lượt là trung điểm của SC,SD
=>IK là đường trung bình
=>IK//CD
mà \(CD\subset\left(ABCD\right);IK\) không thuộc (ABCD)
nên IK//(ABCD)
c: IK//(ABCD)
HI//(ABCD)
\(IK,HI\subset\left(HIK\right)\)
Do đó: (HIK)//(ABCD)
a:
b: BC//AD(ABCD là hình chữ nhật)
\(AD\subset\left(SAD\right)\)
BC không nằm trong mp(SAD)
Do đó: BC//(SAD)
c: AB//CD(ABCD là hình chữ nhật)
\(CD\subset\left(SCD\right)\)
AB không nằm trong mp(SCD)
Do đó: AB//(SCD)
d: Xét ΔSAC có
O,H lần lượt là trung điểm của CA,CS
=>OH là đường trung bình
=>OH//SA
OH//SA
\(SA\subset\left(SAB\right)\)
OH không nằm trong mp(SAB)
Do đó: OH//(SAB)