- Cho một số có ba chữ số, trong đó chữ số hàng trăm gấp đôi chữ số hàng chục. Nếu
lấy tích của chữ số hàng trăm và chữ số hàng chục chia cho tổng của chúng thì được chữ số hàng đơn vị.
Tìm số có ba chữ số đó.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số hàng trăm, chục, đơn vị là a,b,c cho số có dạng \(\overline{abc}\)
Theo bài toán, ta có:
\(a=2\cdot b\) (hàng trăm gấp đôi hàng chục)
\(\left(a\cdot b\right):\left(a+b\right)=c\) (tích hàng trăm và chục chia cho tổng của chúng là ra giá trị hàng đơn vị)
Khi đó \(\left(2\cdot b\cdot b\right):\left(2\cdot b+b\right)=c\)
\(\dfrac{2\cdot b\cdot b}{b\left(2+1\right)}=\dfrac{2\cdot b}{3}=c\)
Mà c là một số nên \(2\cdot b⋮3\)
Mà \(2\cdot b\) là số hàng trăm nên \(2\cdot b>1\), vậy chỉ có \(b=3\) thỏa mãn.
Vậy số hàng trăm là: \(2\cdot3=6\)
Số hàng chục là \(3\)
Số hàng đơn vị là:
\(\left(3\cdot6\right):\left(3+6\right)=2\)
Vậy số cần tìm là \(632\)
Số có ba chữ số có dạng: \(\overline{abc}\) theo bài ra ta có:
a = 2 \(\times\) b nên a + b = 2\(\times\) b + b = 3 x b và a x b = 2 x b x b
suy ra: a x b : (a + b) = \(\dfrac{2\times b\times b}{3\times b}\) = c = \(\dfrac{2}{3}\) x b vậy b = 3; 6; 9
Lập bảng ta có
b | 3 | 6 | 9 |
c = \(\dfrac{2}{3}\) x b | 2 | 4 | 6 |
a = b x 2 | 6 | 12 (loại) | 18 (loại) |
\(\overline{abc}\) | 632 |
Theo bảng trên ta có: số thỏa mãn đề bài là: 632
Gọi giá trị 3 số hàng trăm, chục, đơn vị là \(a,b,c\)
Khi đó: \(a=2\cdot b\)
\(c=\left(a\cdot b\right):\left(a+b\right)\)
\(c=\left(2\cdot b\cdot b\right):\left(a+b\right)\)
\(c=\dfrac{2\cdot b\cdot b}{2\cdot b+b}=\dfrac{2\cdot b\cdot b}{b\left(2+1\right)}=\dfrac{2\cdot b}{3}\)
Mà c là một số nên \(2\cdot b⋮3\) hay \(b⋮3\)
Để số hàng trăm gấp đôi số hàng chục thì:
\(a=2;b=1\)
\(a=4;b=2\)
\(a=6;b=3\)
\(a=8;b=4\)
Mà để \(b⋮3\) thì chỉ có trường hợp \(a=6;b=3\) thỏa mãn.
Vậy lúc đó \(c=6\cdot3:\left(6+3\right)=18:9=2\)
Số đó là: \(632\)