Thực hiện phép tính:
a) \({x^5}:{x^3}\); b) \((4{x^3}):{x^2}\); c) \((a{x^m}):(b{x^n})\)(a ≠ 0; b ≠ 0; m, n \(\in\) N, m ≥ n).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2xy\left(3x^2-5xy+4y^2\right)=6x^3y-10x^2y^2+8xy^3\)
b) \(\left(x-3\right)^2+\left(x+5\right)\left(5-x\right)=x^2-6x+9+25-x^2=34-6x\)
a: \(2xy\left(3x^2-5xy+4y^2\right)=6x^3y-10x^2y^2+8xy^3\)
b: \(\left(x-3\right)^2+\left(x+5\right)\left(5-x\right)\)
\(=x^2-6x+9+25-x^2\)
=-6x+34
a) = x^2 - 9 - (x^2 + 3x - 10)
= -3x + 1
b) = 3x + 1 - 3x + 19
= 20
a: \(\left(x+3\right)\left(x-3\right)-\left(x-2\right)\left(x+5\right)\)
\(=x^2-9-x^2-3x+10\)
\(=-3x+1\)
b: \(\dfrac{27x^3+1}{9x^2-3x+1}-\left(3x-19\right)\)
\(=3x+1-3x+19\)
=20
a. 5x + 3(x2 - x - 1)
= 5x + 3x2 - 3x - 3
= 3x2 + 5x - 3x - 3
= 3x2 + 2x - 3
b. (5 - x)(5 + x) - (2x - 1)2
25 - x2 - (4x2 - 4x + 1)
= 25 - x2 - 4x2 + 4x - 1
= 25 - 1 - x2 - 4x2 + 4x
= 24 - 5x2 + 4x
\(a,\left(x-2\right)\left(x+3\right)-x\left(x-5\right)=x^2-2x+3x-6-x^2+5x=6x-6\)
\(b,\dfrac{1}{x-2}+\dfrac{-2}{x+2}+\dfrac{2x-8}{x^2-4}=\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}-\dfrac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\dfrac{2x-8}{\left(x+2\right)\left(x-2\right)}=\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}-\dfrac{2x-4}{\left(x+2\right)\left(x-2\right)}+\dfrac{2x-8}{\left(x+2\right)\left(x-2\right)}=\dfrac{x+2-2x+4+2x-8}{\left(x+2\right)\left(x-2\right)}=\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}=\dfrac{1}{x+2}\)
\(a,3\left(x^2-7\right)-x\left(3x+5\right)=3x^2-21-3x^2-5x=-5x-21\\ b,\left(12x^2y^2-6xy\right):3xy+2y=3xy\left(4xy-2\right):3xy+2y=4xy-2+2y\)
\(c,\dfrac{4}{x+1}+\dfrac{8}{\left(x-1\right)\left(x+1\right)}=\dfrac{4\left(x-1\right)+8}{\left(x-1\right)\left(x+1\right)}=\dfrac{4x-4+8}{\left(x-1\right)\left(x+1\right)}=\dfrac{4x+4}{\left(x-1\right)\left(x+1\right)}=\dfrac{4\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{4}{x-1}\)
\(a,\left(2x-5\right)\left(5-x\right)=5\left(2x-5\right)-x\left(2x-5\right)=10x-25-2x^2+5x=15x-2x^2-25\\ b,\dfrac{1}{3x-2}-\dfrac{1}{3x+2}=\dfrac{3x+2-3x+2}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{4}{\left(3x-2\right)\left(3x+2\right)}\)
\(c,\dfrac{3}{x-3}-\dfrac{6x}{x^2-9}+\dfrac{x}{x+3}=\dfrac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{6x}{\left(x-3\right)\left(x+3\right)}+\dfrac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x+9-6x+x^2-3x}{\left(x-3\right)\left(x+3\right)}=\dfrac{x^2-6x+9}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}=\dfrac{x-3}{x+3}\)
a) \(=6x^3+8x^2+2x-6x^3=8x^2+2x\)
b) \(=\left[3xy\left(xy+2xy^2-4\right)\right]:3xy=xy+2xy^2-4\)
c) \(=\dfrac{10x}{\left(x-2\right)\left(x+2\right)}+\dfrac{3}{x+2}-\dfrac{5}{x-2}=\dfrac{10x+3\left(x-2\right)-5\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{8x-16}{\left(x-2\right)\left(x+2\right)}=\dfrac{8\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{8}{x+2}\)
a, \(=6x^3+12x^2+2x-6x^3\\=12x^2+2x\)
b,
\(=xy+2xy^2-4\)
c,
\(\dfrac{10x}{x^2-4}+\dfrac{3}{x+2}-\dfrac{5}{x-2}\)
\(=\dfrac{10x}{\left(x-2\right)\left(x+2\right)}+\dfrac{3x-6}{\left(x-2\right)\left(x+2\right)}-\dfrac{5x+10}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{10x+3x-6-5x-10}{\left(x-2\right)\left(x+2\right)}=\dfrac{8x-16}{\left(x-2\right)\left(x+2\right)}=\dfrac{8\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{8}{x+2}\)
\(a,=3x^3y^3-3x^2y^3+3x^2y^4+3xy^5\\ b,=\left(2x^3-6x^2+10x-3x^2+9x-15\right):\left(x^2-3x+5\right)\\ =\left[2x\left(x^2-3x+5\right)-3\left(x^2-3x+5\right)\right]:\left(x^2-3x+5\right)\\ =2x-3\\ c,=\left[x^2\left(x-3\right)+\left(x-3\right)\right]:\left(x-3\right)=x^2+1\)
\(a,=\left(x^3+3x^2-x^2-3x+x+3\right):\left(x+3\right)\\ =\left(x+3\right)\left(x^2-x+1\right):\left(x+3\right)\\ =x^2-x+1\\ b,=\left(x^3+2x^2-x^2-2x+3x+6\right):\left(x+2\right)\\ =\left(x+2\right)\left(x^2-x+3\right):\left(x+2\right)\\ =x^2-x+3\)
\(\left(\dfrac{1}{x}+x-2\right):\left(\dfrac{1}{x^2-x}+1-\dfrac{3}{x-1}\right)\)
\(=\dfrac{x^2-2x+1}{x}:\dfrac{1+x^2-x-3x}{x\left(x-1\right)}\)
\(=\dfrac{\left(x-1\right)^2}{x}\cdot\dfrac{x\left(x-1\right)}{x^2-4x+1}=\dfrac{\left(x-1\right)^3}{x^2-4x+1}\)
a) \({x^5}:{x^3} = {x^{5 - 3}} = {x^2}\);
b) \((4{x^3}):{x^2} = (4:1).({x^3}:{x^2}) = 4x\);
c) \((a{x^m}):(b{x^n}) = (a:b).({x^m}:{x^n}) = (a:b).{x^{m - n}}\)(a ≠ 0; b ≠ 0; m, n \(\in\) N, m ≥ n).