K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2021

a. 5x + 3(x2 - x - 1)

= 5x + 3x2 - 3x - 3

= 3x2 + 5x - 3x - 3

= 3x2 + 2x - 3

b. (5 - x)(5 + x) - (2x - 1)2

25 - x2 - (4x2 - 4x + 1)

= 25 - x2 - 4x2 + 4x - 1

= 25 - 1 - x2 - 4x2 + 4x 

= 24 - 5x2 + 4x

3 tháng 9 2021

a) \(5x+3\left(x^2-x-1\right)=5x+3x^2-3x-3=3x^2+2x-3\)

b) \(\left(5-x\right)\left(5+x\right)-\left(2x-1\right)^2=25-x^2-4x^2+4x-1=-5x^2+4x+24\)

 

14 tháng 2 2020

Câu 1 :

a, Ta có : \(x^2-10x=-25\)

=> \(x^2-10x+25=0\)

=> \(\left(x-5\right)^2=0\)

=> \(x-5=0\)

=> \(x=5\)

Vậy phương trình có nghiệm là x = 5 .

b, Ta có : \(5x\left(x-1\right)=x-1\)

=> \(5x\left(x-1\right)-x+1=0\)

=> \(5x\left(x-1\right)-\left(x-1\right)=0\)

=> \(\left(5x-1\right)\left(x-1\right)=0\)

=> \(\left[{}\begin{matrix}5x-1=0\\x-1=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\frac{1}{5}\\x=1\end{matrix}\right.\)

Vậy phương trình có nghiệm là x = 1, x = \(\frac{1}{5}.\)

c, Ta có : \(2\left(x+5\right)-x^2-5x=0\)

=> \(2\left(x+5\right)-x\left(x+5\right)=0\)

=> \(\left(2-x\right)\left(x+5\right)=0\)

=> \(\left[{}\begin{matrix}2-x=0\\x+5=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)

Vậy phương trình có nghiệm là x = 2, x = -5 .

d, Ta có : \(x^2-2x-3=0\)

=> \(x^2-3x+x-3=0\)

=> \(x\left(x+1\right)-3\left(x+1\right)=0\)

=> \(\left(x-3\right)\left(x+1\right)=0\)

=> \(\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

Vậy phương trình có nghiệm là x = 3, x = -1 .

e, Ta có : \(2x^2+5x-3=0\)

=> \(2x^2+6x-x-3=0\)

=> \(x\left(2x-1\right)+3\left(2x-1\right)=0\)

=> \(\left(x+3\right)\left(2x-1\right)=0\)

=> \(\left[{}\begin{matrix}x+3=0\\2x-1=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=-3\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy phương trình có nghiệm là x = -3, x = \(\frac{1}{2}.\)

14 tháng 2 2020

\(1.x^2-10x=-25\\ \Leftrightarrow x^2-10x+25=0\\\Leftrightarrow \left(x-5\right)^2=0\\\Leftrightarrow x-5=0\\ \Leftrightarrow x=5\)

Vậy nghiệm của phương trình trên là \(5\)

\(2.5x\left(x-1\right)=x-1\\ \Leftrightarrow\left(5x-1\right)\left(x-1\right)=0\\\Leftrightarrow \left[{}\begin{matrix}5x-1=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{5}\\x=1\end{matrix}\right.\)

Vậy tập nghiệm của phương trình trên là \(S=\left\{1;\frac{1}{5}\right\}\)

9 tháng 11 2017

Mn ơi làm hộ mk vs mai mk kiểm tra

21 tháng 8 2021

a) 2(x-1)2 - 4(x+3)2 + 2x(x-5)

= 2(x-2x +1)- 4(x2 + 6x +9) + 2x2 -10x

= 2x2 - 4x + 2 -4x2 - 24x - 36 + 2x2 - 10x

= (2x2 + 2x2 - 4x2) - (4x + 24x+10x) +(2-36)

= -38x-34

b) 2(2x+5)2  -3(4x+1)(1-4x)

= 2(4x2 + 20x + 25) + 3(4x+1)(4x-1)

= 8x2 +40x + 50 + 3(16x2 -1)

= 8x2 + 40x + 50 + 48x2 - 3

=56x2 +40x + 47

21 tháng 8 2021

a, \(2\left(x-1\right)^2-4\left(x+3\right)^2+2x\left(x-5\right)\)

\(=2\left(x^2-2x+1\right)-4\left(x^2+6x+9\right)+2x\left(x-5\right)\)

\(=2x^2-4x+2-4x^2-24x-36+2x^2-10=-28x-44\)

b, \(2\left(2x+5\right)^2-3\left(4x+1\right)\left(1-4x\right)\)

\(=2\left(4x^2+20x+25\right)-3\left(1-16x^2\right)\)

\(=8x^2+40x+50-3+48x^2=56x^2+40x+47\)

21 tháng 5 2021

a.\(2x\left(7x^2-5x-1\right)=14x^3-10x^2-2x\)

b.\(-2x^3\left(2x^2-3y+5yz\right)=-4x^5+6x^3y-10x^3yz\)

c.\(\left(2x-y\right)\left(4x^2-2xy+y^2\right)=2x\left(4x^2-2xy+y^2\right)-y\left(4x^2-2xy+y^2\right)\)

\(=8x^2-4x^2y+4xy^2-4x^2y+2xy^2-y^3\)

21 tháng 5 2021

a.2x(7x2−5x−1)=14x3−10x2−2x

b.−2x3(2x2−3y+5yz)=−4x5+6x3y−10x3yz

c.(2x−y)(4x2−2xy+y2)=2x(4x2−2xy+y2)−y(4x2−2xy+y2)

=8x2−4x2y+4xy2−4x2y+2xy2−y3

27 tháng 11 2022

a: \(=\dfrac{4x^2+4x+1-4x^2+4x-1}{\left(2x+1\right)\left(2x-1\right)}\cdot\dfrac{5\left(2x-1\right)}{4x}\)

\(=\dfrac{8x\cdot5}{4x\left(2x+1\right)}=\dfrac{10}{2x+1}\)

b: \(=\left(\dfrac{1}{x^2+1}+\dfrac{x-2}{x+1}\right):\dfrac{1+x^2-2x}{x}\)

\(=\dfrac{x+1+x^3+x-2x^2-2}{\left(x+1\right)\left(x^2+1\right)}\cdot\dfrac{x}{\left(x-1\right)^2}\)

\(=\dfrac{x^3-2x^2+2x-1}{\left(x+1\right)\left(x^2+1\right)}\cdot\dfrac{x}{\left(x-1\right)^2}\)

\(=\dfrac{\left(x-1\right)\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2+1\right)}\cdot\dfrac{x}{\left(x-1\right)^2}\)

\(=\dfrac{x\left(x^2-x+1\right)}{\left(x^2-1\right)\left(x^2+1\right)}\)

c: \(=\dfrac{1}{x-1}-\dfrac{x^3-x}{x^2+1}\cdot\left(\dfrac{1}{\left(x-1\right)^2}-\dfrac{1}{\left(x-1\right)\left(x+1\right)}\right)\)

\(=\dfrac{1}{x-1}-\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\dfrac{x+1-x+1}{\left(x-1\right)^2\cdot\left(x+1\right)}\)

\(=\dfrac{1}{x-1}-\dfrac{x}{x^2+1}\cdot\dfrac{2}{\left(x-1\right)}\)

\(=\dfrac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}=\dfrac{x-1}{x^2+1}\)

24 tháng 6 2018

\(a,5x^2-3x\left(x-2\right)\)

\(=5x^2-3x^2+6x\)

\(=2x^2+6x\)
\(b,3x\left(x-5\right)-5x\left(x+7\right)\)
\(=3x^2-15x-5x^2-35x\)

\(=-2x^2-50x\)

c, Đề ko rõ Yang Yang

\(d,7x\left(x-5\right)+3\left(x-2\right)\)

\(=7x^2-35x+3x-6\)

\(=7x^2-32x-6\)

\(e,5-4x\left(x-2\right)+4x^2\)

\(=5-4x^2+8x+4x^2\)

\(=5+8x\)

\(f,4x\left(2x-3\right)-5x\left(x-2\right)\)

\(=8x^2-12x-5x^2+10x\)

\(=3x^2-2x\)

14 tháng 2 2020

Giải

1) 3xy2 : 5x = \(\frac{3}{5}\)y2

2) 15x4yz3 : 4xyz = \(\frac{15}{4}\)x3z2

3) (4x2y2 - 12xy3 - 7x) : 3x = \(\frac{4}{3}\)xy2 - 4y3 - \(\frac{7}{3}\)

4) (14x4y2 - 12xy3 - x) : 4x = \(\frac{7}{2}\)x3y2 - 3y3 - \(\frac{1}{4}\)

5) (6x2 + 13x - 5) : (2x + 5) = (3x - 1)(2x + 5) : (2x + 5) = 3x - 1

6) (2x4 + x3 - 5x2 - 3x - 3) : (x2 - 3)
= 2x4 + x2 - 6x2 + x3 - 3 - 3x : x2 - 3
= x2(2x2 + x + 1) - 3(2x2 + x + 1) : x2 - 3
= (2x2 + x + 1)(x2 - 3) : x2 - 3

= 2x2 + x + 1

Câu 2:

a: \(=\dfrac{\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)}{x^2-1}=x^2-2x+1=\left(x-1\right)^2\)

b: \(=\dfrac{x^3-3x^2+2x^2-6x-x+3}{x-3}=x^2+2x-1\)