tính
S=\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\)
giúp mình các bạn ơi mình sắp học rồi nhanh nhanh mình tích cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(E=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)
\(E=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)
\(E=\frac{1}{1}-\frac{1}{99}\)
\(E=\frac{98}{99}\)
E= \(\frac{2}{1.3}.\frac{2}{3.5}+...+\frac{2}{97.99}\)
E = 1 - \(\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\)
E = 1 - 1/99
E = 98 / 99
Chúc bạn học tốt
n=\(\frac{2}{3}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)
n=\(\frac{2}{3}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)
n=\(\frac{2}{3}\left(1-\frac{1}{99}\right)\)
n=\(\frac{2}{3}\times\frac{98}{99}\)
n=\(\frac{196}{297}\)
Câu \(M=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{2}{99.100}\)Bạn viết \(\frac{3}{99.100}=\frac{2}{99.100}\)mik sửa lại nhé.
\(M=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{99.100}\)
\(M=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{100-99}{99.100}\)
\(M=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(M=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{100}\right)\)
\(M=\frac{3}{2}.\frac{99}{100}=\frac{297}{200}\)
\(N=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+....+\frac{3}{97.99}\)
\(N=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+....+\frac{99-97}{97.99}\)
\(N=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{97}-\frac{1}{99}\right)\)
\(N=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{99}\right)\)
\(\Rightarrow N=\frac{3}{2}.\frac{98}{99}=\frac{49}{33}\)
Ta thấy : \(\frac{297}{200}>\frac{49}{33}\Rightarrow M>N\)
\(\left(1-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{99}\right)-x\)\(=\frac{-100}{99}\)
\(\left(1-\frac{1}{99}\right)-x=\frac{-100}{99}\)
\(\frac{98}{99}-x=\frac{-100}{99}\)
\(x=\frac{98}{99}-\left(-\frac{100}{99}\right)\)
\(x=\frac{198}{99}=2\)
CHÚC BN HOK TỐT!
ĐÚNG THÌ K CHO MK NHA!
\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\)
\(=1-\frac{1}{99}\)
\(=\frac{98}{99}\)
\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\)
\(=1-\frac{1}{99}\)
\(=\frac{98}{99}\)
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
=\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
= \(\frac{1}{3}-\frac{1}{99}\)
= \(\frac{33}{99}-\frac{1}{99}\)
= \(\frac{32}{99}\)
CHO MIK NHA
Nguyễn Lê Bảo An
Hình như sai rồi!
Trên T/S là 2 xog biến tấu 1 hồi mất số 2 của đề cho rồi.
Phải bỏ dòng thứ 2 vào trog ngoặc rồi ở ngoài x vs 2
Kết quả là: 66/99
# Hình như thui nha. Nếu Milk sai thì thôi nha
A= \(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{37}-\frac{1}{39}=\frac{1}{3}-\frac{1}{39}=\frac{4}{13}\)
B= \(\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+....+\frac{2}{8.9.10}\right)=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)\)
=\(\frac{1}{2}\left(\frac{1}{2}-\frac{1}{90}\right)=\frac{1}{2}.\frac{22}{45}=\frac{11}{45}\)
\(A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{37.39}\)
\(A=1\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{37.39}\right)\)Mình giải thích luôn chỗ này là: 2=2.1 nên mình tách ra và đặt 1 ra ngoài
\(A=1\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{37}-\frac{1}{39}\right)\)Mình giải thích: \(\frac{2}{3.5}=\frac{1}{3}-\frac{1}{5}=\frac{5}{15}-\frac{3}{15}=\frac{2}{15}=\frac{2}{3.5}\)
\(A=1\left(\frac{1}{3}-\frac{1}{39}\right)\)Mình giải thích:\(-\frac{1}{5}+\frac{1}{5}=0\)tương tự các cặp còn lạo ta thấy \(\frac{1}{3}\) và \(-\frac{1}{39}\)
\(A=1\left(\frac{13}{39}-\frac{1}{39}\right)\)
\(A=1.\frac{12}{39}\)\
\(A=1.\frac{4}{13}\)
\(A=\frac{4}{13}\)
B cũng tương tự nên mình không giải thích
\(B=\frac{1}{1.2.3} +\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\)
\(B=1\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right)\)
\(B=1\left(\frac{1}{1}-\frac{1}{2}-\frac{1}{3}+\frac{1}{2}-\frac{1}{3}-\frac{1}{8}+...+\frac{1}{8}-\frac{1}{9}-\frac{1}{80}\right)\)
\(B=1\left(\frac{1}{1}-\frac{1}{9}-\frac{1}{80}\right)\)
\(B=1\left(\frac{720}{720}-\frac{80}{720}-\frac{9}{720}\right)\)
\(B=1.\frac{631}{720}\)
\(B=\frac{631}{720}\)
\(\frac{2.6.10+6.10.14+10.14.18+...+194.198.202}{1.3.5+3.5.7+...+97.99.101}\)
\(=\frac{2^3.1.3.5+2^3.3.5.7+2^3.97.99.101}{1.3.5+3.5.7+...+97.99.101}\)
\(=\frac{2^3\left(1.3.5+3.5.7+...+97.99.101\right)}{1.3.5+3.5.7+...+97.99.101}\)
\(=\frac{2^3}{1}=8\)
Vậy A = 8
\(2S=\frac{2}{1}-\frac{2}{3}+\frac{2}{3}-\frac{2}{5}+...+\frac{2}{97}-\frac{2}{99}\)
\(2S=2-\frac{2}{99}\)
\(2S=\frac{196}{99}\)
\(S=\frac{196}{99}\cdot\frac{1}{2}=\frac{98}{99}\)
Ta có: S=2/1.3+2/3.5+...+2/97.99
S= 2/2.(1-1/3+1/3-1/5+...+1/97-1/99)
S= 1-1/99=98/99