K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
13 tháng 1

Vì ΔA’B’C’ ∽ ΔABC 

=> ΔA’M’B’ ∽ ΔAMB 

=> \(\frac{{A'M'}}{{AM}} = \frac{{A'B'}}{{AB}}(1)\) (1)

 Vì \(\Delta A'B'C'\) ∽ ΔABC 

=> Vì ΔA′B′N′ ∽ ΔABN 

=> \(\frac{{B'N'}}{{BN}} = \frac{{A'B'}}{{AB}}\) (2)

Từ (1) và (2) => \(\frac{{A'M'}}{{AM}} = \frac{{B'N'}}{{BN}}\)(3)

 Vì ΔA’B’C’ ∽ ΔABC 

=>  Vì ΔA’C’P’ ∽ ΔACP 

=> \(\frac{{C'P'}}{{CP}} = \frac{{A'C'}}{{AC}}\) (4)

 Vì ΔA′B′C′ ∽ ΔABC 

=> ΔA′M′C′ ∽ ΔAMC 

=> \(\frac{{A'M'}}{{AM}} = \frac{{A'C'}}{{AC}}\) (5)

Từ (4) và (5) => \(\frac{{C'P'}}{{CP}} = \frac{{A'M'}}{{AM}}\) (6)

Từ (3) và (6) => \(\frac{{A'M'}}{{AM}} = \frac{{B'N'}}{{BN}} = \frac{{C'P'}}{{CP}}\)

18 tháng 4 2019

Xét tam giác QMC và tam giác NMB có:

BM=CN(giả thiết)

NM=NQ(GT)

BMN=QMC(đối đỉnh)

\(\Rightarrow\)2 tam giác = nhau

\(\Rightarrow\)QC=BN(2 cạnh tương ứng)

+)Ta có:N trung điểm AC

             M trung điểm BC

Nên áp dụng bài toàn phụ về đường trung bình(ko biết thì nhớ search)

\(\Rightarrow\)MN//AB,MN=AB/2

\(\Rightarrow\)MQ//AB,MQ=AB/2(MN=MQ)

\(\Rightarrow\)MQ//AB,MQ=AP(AP=AB/2)

Ta có :MQ//AP<MQ=AP

Nên áp dụng tính chất đoạn chắn (tự search dùm nếu ko bít)

\(\Rightarrow\)AM=PQ.

(Kết luận thì tự đi mà viết mỏi tay VCL!!!)

Để phòng tránh copy ,vui lòng k cho vũ văn đạt đầu tiên
 

18 tháng 4 2019

Câu b) tui đang nghĩ nha ! Chắc phải vài tiếng

26 tháng 3

Cho tam giác HPG có 3 trung tuyến HM,PA,GB cắt nhau tại T . Biết TH = 3 cm,TP=TG=4 cm                               a, Tính HM,PA,GB.                                 b, Chứng minh tam giác HPG cân

       

Xét ΔABC có

AM,CP,BN là trung tuyến

AM cắt CP cắt BN tại G

=>G là trọng tâm

=>BG=2/3BN; CG=2/3CP; AG=2/3AM

=>BK=KG=GN=1/3BN

=>GK=1/3BN; GM=1/3AM

Xet ΔBGC có BM/BC=BK/BG

nên MK//GC và MK/GC=BM/BC=1/2

=>MK=1/2GC=1/2*2/3*CP=1/3CP

26 tháng 2 2023

cám ơn bạn nhìu

 

16 tháng 7 2015

a) Áp dụng định lí Py-ta-go vào tam giác ACM, ta có:

   \(AM^2+CM^2=CA^2\)

Hay \(3,5^2+CM^2=5^2\)=>\(CM^2\)=25-12,25=12,75 => CM=\(\sqrt{12,75}\)

Vì M là trung điểm của CB => CM =MB =\(\sqrt{12,75}\)

=> CB= 2. \(\sqrt{12,75}\) =\(\sqrt{51}\)

Áp dụng định lí Py-ta-go vào tam giác ABC, ta có:

AC^2+AB^2=BC^2

Hay 5^2+AB^2=\(\sqrt{51}^2\)

=>AB=\(\sqrt{26}\)

b) BN=\(\frac{\sqrt{26}}{2}\)

CP=\(\frac{\sqrt{74}}{2}\)

Hình như vậy đó bạn