K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2023

\(u_n:\left\{{}\begin{matrix}u_1=0;u_1=1\\u_{n+2}=\dfrac{u_{n+1}}{u_{n+1}+u_{n+2}}\end{matrix}\right.\)

Giả sử \(limu_n=a\Rightarrow limu_{n+1}=limu_{n+2}=a\)

\(\Rightarrow a=\dfrac{a}{a+a}=\dfrac{a}{2a}=\dfrac{1}{2}\)

Nên dãy \(u_n\) có giới hạn hữu hạn

vì \(\left\{{}\begin{matrix}u_1=0\\u_2=1>0\end{matrix}\right.\)

\(\Rightarrow u_{n+2}=\dfrac{u_{n+1}}{u_{n+1}+u_{n+2}}>0,\forall n\inℕ\)

\(\Rightarrow a>0\)

\(\Rightarrow limu_n=a=\dfrac{1}{2}\)

3 tháng 10 2017

Giải bài tập Toán 11 | Giải Toán lớp 11 Giải bài tập Toán 11 | Giải Toán lớp 11

14 tháng 6 2018

14 tháng 8 2023

 Dễ thấy \(u_n>0,\forall n\inℕ^∗\)

 Ta có \(u_{n+1}-u_n=\dfrac{u_n^2+2021}{2u_n}-u_n=\dfrac{2021-u_n^2}{2u_n}\)

 Với \(n\ge2\) thì \(u_n=\dfrac{u_{n-1}^2+2021}{2u_{n-1}}\) \(=\dfrac{u_{n-1}}{2}+\dfrac{2021}{2u_{n-1}}\) \(>2\sqrt{\dfrac{u_{n-1}}{2}.\dfrac{2021}{2u_{n-1}}}\) \(=\sqrt{2021}\)

Vậy \(u_n>\sqrt{2021},\forall n\ge2\), suy ra \(u_{n+1}-u_n=\dfrac{2021-u_n^2}{2u_n}< 0,\forall n\inℕ^∗\)

\(\Rightarrow\) Dãy \(\left(u_n\right)\) là dãy giảm. Mà \(u_n>\sqrt{2021}\)  \(\Rightarrow\left(u_n\right)\) có giới hạn hữu hạn. Đặt \(\lim\limits_{n\rightarrow+\infty}u_n=L\) \(\Rightarrow L=\dfrac{L^2+2021}{2L}\) \(\Leftrightarrow L=\sqrt{2021}\)

 Vậy \(\lim\limits_{n\rightarrow+\infty}u_n=\sqrt{2021}\)

 

14 tháng 8 2023

Dễ thấy ��>0,∀�∈N∗

 Ta có ��+1−��=��2+20212��−��=2021−��22��

 Với �≥2 thì ��=��−12+20212��−1 =��−12+20212��−1 >2��−12.20212��−1 =2021

Vậy ��>2021,∀�≥2, suy ra ��+1−��=2021−��22��<0,∀�∈N∗

 Dãy (��) là dãy giảm. Mà ��>2021  ⇒(��) có giới hạn hữu hạn. Đặt lim⁡�→+∞��=� ⇒�=�2+20212� ⇔�=2021

 Vậy lim⁡�→+∞��=2021
 

8 tháng 11 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

21 tháng 9 2017

Chọn D

9 tháng 8 2018