K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 9 2019

\(u_n^2+2011=2u_n.u_{n+1}\Rightarrow u_{n+1}=\frac{u_n^2+2011}{2u_n}\)

Ta có \(u_1>0\), giả sử \(u_k>0\Rightarrow u_{k+1}=\frac{u_k^2+2011}{2u_k}>0\)

\(\Rightarrow\) Dãy đã cho là dãy dương

Mặt khác \(u_{n+1}=\frac{1}{2}\left(u_n+\frac{2011}{u_n}\right)\ge\frac{1}{2}.2\sqrt{2011}=\sqrt{2011}\)

\(\Rightarrow u_n\ge2011\) \(\forall n\ge1\Rightarrow\) dãy đã cho bị chặn dưới

Xét \(\frac{u_{n+1}}{u_n}=\frac{u_n^2+2011}{2u^2_n}=\frac{1}{2}+\frac{2011}{2u_n^2}\le\frac{1}{2}+\frac{2011}{2.2011}=1\) (do \(u_n\ge\sqrt{2011}\))

\(\Rightarrow u_{n+1}\le u_n\) \(\Rightarrow\) dãy đã cho là dãy giảm

Dãy giảm, bị chặn dưới \(\Rightarrow\) dãy có giới hạn

Gọi giới hạn của dãy là \(a\Rightarrow\sqrt{2011}\le a\le u_1\)

\(\Rightarrow a^2-2a^2+2011=0\)

\(\Rightarrow a^2=2011\Rightarrow a=\sqrt{2011}\)

\(\Rightarrow lim\left(u_n\right)=\sqrt{2011}\)

NV
29 tháng 3 2021

Đề không cho sẵn dãy tăng à? Vậy phải chứng minh nó tăng trước

\(u_{n+1}=\dfrac{u_n^2+2018u_n+1}{2020}\)

\(u_{n+1}-u_n=\dfrac{u_n^2+2018u_n+1}{2020}-u_n=\dfrac{\left(u_n-1\right)^2}{2020}\ge0\) \(\Rightarrow\) dãy tăng và không bị chặn trên \(\Rightarrow lim\left(u_n\right)=+\infty\)

\(\Rightarrow2020u_{n+1}=u_n^2+2018u_n+1\)

\(\Leftrightarrow2020u_{n+1}-2020=u_n^2+2018u_n-2019\)

\(\Leftrightarrow2020\left(u_{n+1}-1\right)=\left(u_n+2019\right)\left(u_n-1\right)\)

\(\Rightarrow\dfrac{1}{2020\left(u_{n+1}-1\right)}=\dfrac{1}{\left(u_n+2019\right)\left(u_n-1\right)}=\dfrac{1}{2020}\left(\dfrac{1}{u_n-1}-\dfrac{1}{u_n+2019}\right)\)

\(\Rightarrow\dfrac{1}{u_n+2019}=\dfrac{1}{u_n-1}-\dfrac{1}{u_{n+1}-1}\)

Thế n=1;2;...;n ta được:

\(\dfrac{1}{u_1+2019}=\dfrac{1}{u_1-1}-\dfrac{1}{u_2-1}\)

\(\dfrac{1}{u_2+2019}=\dfrac{1}{u_2-1}-\dfrac{1}{u_3-1}\)

...

\(\dfrac{1}{u_n+2019}=\dfrac{1}{u_n-1}-\dfrac{1}{u_{n+1}-1}\)

Cộng vế: \(S_n=\dfrac{1}{u_n-1}-\dfrac{1}{u_{n+1}-1}=\dfrac{1}{2018}-\dfrac{1}{u_{n+1}-1}\)

\(\Rightarrow\lim\left(S_n\right)=\dfrac{1}{2018}-\dfrac{1}{\infty}=\dfrac{1}{2018}\)

NV
12 tháng 2 2020

\(\left\{{}\begin{matrix}u_1=a\\u_{n+1}=\frac{1}{2}u_n\end{matrix}\right.\)

\(\Rightarrow u_n\) là CSN với công bội \(q=\frac{1}{2}\)

\(\Rightarrow u_n=a.\left(\frac{1}{2}\right)^{n-1}\)

\(\Rightarrow lim\left(u_n\right)=lim\left(\frac{a}{2^{n-1}}\right)=0\)

Mọi người giải giúp mk với ạ Câu 313. Giá trị đúng của lim Vn(n+1-In-1) là: A.-1. B. 0. D. +o. C. 1. Câu 314. Cho dãy số (un) với un = (n-1), 2n +2 . Chọn kết quả đúng của limu, là: %3D n' +n? -1 A. -00. B. 0. D. +oo, C. 1. 5" -1 Câu 315. lim- bằng : 3" +1 A. +oo. D. -co. B. 1. C. 0. 10 Câu 316. lim bằng : Vn* +n? +1 C. 0. D. -00. A. +oo. B. 10. Câu 317. lim200 - 3n +2n² bằng : C too. D. -0. B. 1. A. 0. Tìm két quả đúng của limu, . Câu 318. Cho...
Đọc tiếp

Mọi người giải giúp mk với ạ

Câu 313. Giá trị đúng của lim Vn(n+1-In-1) là: A.-1. B. 0. D. +o. C. 1.

Câu 314. Cho dãy số (un) với un = (n-1), 2n +2 . Chọn kết quả đúng của limu, là: %3D n' +n? -1 A. -00. B. 0. D. +oo, C. 1. 5" -1

Câu 315. lim- bằng : 3" +1 A. +oo. D. -co. B. 1. C. 0. 10

Câu 316. lim bằng : Vn* +n? +1 C. 0. D. -00. A. +oo. B. 10.

Câu 317. lim200 - 3n +2n² bằng : C too. D. -0. B. 1. A. 0. Tìm két quả đúng của limu, .

Câu 318. Cho dãy số có giới hạn (un) xác định bởi : -,n 21 2-u C. -1. D. B. 1. A. 0. 1 1 1 [2

Câu 319. Tìm giá trị đúng của S = 2| 1+-+ 2 48 2" C. 2 2. D. B. 2. A. 2 +1. 4" +2"+1 bằng :

Câu 320. Lim4 3" + 4"+2 1 B. D. +oo. A. 0. In+1-4

Câu 321. Tính giới hạn: lim Vn+1+n C.-1. D. B.O. A. 1. +(2n +1)- * 3n +4 1+3+5+...+ 3n 14,

Câu 322. Tính giới hạn: lim C. 2 3 B. D. 1. A. 0. 1 nlat1) +......+

Câu 323. Tính giới hạn: lim n(n+1) 1.2 2.3 3 C. 21 D. Không có giới hạn. B. 1. A. 0.

0
NV
7 tháng 2 2021

Ta sẽ chứng minh dãy bị chặn trên bởi 2

Thật vậy, với \(n=1;2\) thỏa mãn

Giả sử điều đó cũng đúng với \(n=k\) , tức \(u_k< 2\)

Ta cần chứng minh \(u_{k+1}< 2\)

Ta có: \(u_{k+1}=\sqrt{3u_k-2}< \sqrt{3.2-2}=2\) (đpcm)

Tương tự, ta cũng quy nạp được dễ dàng \(u_n>1\)

Mặt khác: \(u_n-u_{n-1}=\sqrt{3u_{n-1}-2}-u_{n-1}=\dfrac{3u_{n-1}-2-u_{n-1}^2}{\sqrt{3u_{n-1}-2}+u_{n-1}}\)

\(=\dfrac{\left(2-u_{n-1}\right)\left(u_{n-1}-1\right)}{\sqrt{3u_{n-1}-2}+u_{n-1}}>0\)

\(\Rightarrow u_n>u_{n-1}\Rightarrow\) dãy tăng

Dãy tăng và bị chặn trên nên có giới hạn hữu hạn.

Gọi giới hạn đó là k thì:

\(k=\sqrt{3k-2}\Leftrightarrow k=2\)

NV
7 tháng 2 2021

\(u_n-u_{n+1}=u_n+\left(1-u_{n+1}\right)-1\ge2\sqrt{u_n\left(1-u_{n+1}\right)}-1>0\)

\(\Rightarrow u_n>u_{n+1}\Rightarrow\) dãy giảm

Dãy giảm và bị chặn dưới bởi 0 nên có giới hạn hữu hạn.

Gọi giới hạn đó là k

\(\Rightarrow k\left(1-k\right)\ge\dfrac{1}{4}\Rightarrow\left(2k-1\right)^2\le0\Rightarrow k=\dfrac{1}{2}\)

Vậy \(\lim\left(u_n\right)=\dfrac{1}{2}\)