cho tam giác abc có ab nhỏ hơn c , phân giác bdtreen cạnh bc lấy điểm e sao choba=be . a)chứng minh rằng da=de .b)de cắt ba ở f chứng minh tam giác adf=tam giác edc .c)tam giác bfc và tam giác dfc là các tam giác gì vì sao
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét t.giác DBE và t.giác DBA có:
BD cạnh chung
\(\widehat{EBD}\)=\(\widehat{ABD}\)(gt)
BA=BE(gt)
=> t.giác DBE=t.giác DBA(c.g.c)
=> DA=DE(2 cạnh tương ứng)
b, vì \(\widehat{BAF}\)và \(\widehat{BEC}\)là 2 góc bẹt = 180 độ mà \(\widehat{BAD}\)=\(\widehat{BED}\)=> \(\widehat{DAF}\)=\(\widehat{DEC}\)
xét t.giác ADF và t.giác EDC có:
DA=DE(theo câu a)
\(\widehat{ADF}\)=\(\widehat{EDC}\)
\(\widehat{DAF}\)=\(\widehat{DEC}\)(cmt)
=> t.giác ADF=t.giác EDC(g.c.g)
c, vì t.giác ADF=t.giác EDC(câu b) => DF=DC=> t.giác DFC cân tại D
ta có: BA=BE mà AF=EC=> BF=BC
=> t.giác BFC cân tại B
Cm: a) Xét t/giác ABD và t/giác EBD
có: AB = BE (gt)
\(\widehat{ABD}=\widehat{EBD}\) (gt)
BD : chung
=> t/giác ABD = t/giác EBD (c.g.c)
=> DA = DE (2 cạnh t/ứng)
b) Ta có: \(\widehat{BAD}+\widehat{DAF}=180^0\) (kề bù)
\(\widehat{BED}+\widehat{DEC}=180^0\) (kề bù)
Mà \(\widehat{BAD}=\widehat{BED}\)(vì t/giác ABD = t/giác EBD)
=> \(\widehat{DAF}=\widehat{DEC}\)
Xét t/giác ADF và t/giác EDC
có: \(\widehat{ADF}=\widehat{EDC}\)(đối đỉnh)
\(\widehat{DAF}=\widehat{DEC}\)(cmt)
AD = DE (vì t/giác ABD = t/giác EBD)
=> t/giác ADF = t/giác EDC (g.c.g)
c) Ta có: t/giác ADF = t/giác EDC (cmt)
=> AF = EC ; DF = DC (các cặp cạnh tương ứng)
+) DF = DC => t/giác DFC là t/giác cân tại D
Ta lại có: AB + AF = BF
BE + EC = BC
mà AB = BE (gt); AF = EC (cmt)
=> BF = BC
=> t/giác BFC là t/giác cân tại B
bạn tự vẽ hình nha
a, Xét tam giác ABD và tam giác EBD
có:BA=BE
^ABD=^EBD
BD là canh chung
suy ra tam giác bằng nhau suy ra DA=DE
b,XÉT 2 tam gics có AD=DE ;^ADF=^EDC
^DAF=^DEC(^DAF+^DAB=180 đọ
suy ra tam giác bằng nhau
c,tam giác ADF=EDC
DF=DC
tam giác DFC cân
ta có ÀF + AB =BF
BE + EC = BC
Mà BÉ=AB
ÀF=EC
suy ra BF=BC
tam giác BFC cân tại B
nhớ tích đùng cho mình nha
a: Xét ΔDAB và ΔDEB có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔDAB=ΔDEB
=>góc DEB=90 độ
=>DE vuông góc BC
b: AD=DE
mà DE<DC
nên AD<DC
c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
AF=EC
=>ΔDAF=ΔDEC
a: BC=5cm
AB<AC<BC
=>góc C<góc B<góc A
b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>DA=DE
c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADF=góc EDC
=>ΔDAF=ΔDEC
=>DF=DC>DE
xét \(\Delta ABD\) và \(\Delta EBD\) có
\(\hept{\begin{cases}\widehat{ABD}=\widehat{EBD}\\AB=BE\\chungBD\end{cases}}\)
=> 2 tam giác = nhau và có AD=DE(ĐPCM)
b)tí nữa có gì giải cho sau nhé, h mik phải ăn cơm rồi
a: AC=8cm
b: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
Suy ra: DA=DE
c: Xét ΔADK vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADK}=\widehat{EDC}\)
Do đó: ΔADK=ΔEDC
Suy ra: DK=DC
hay ΔDKC cân tại D