Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác \(ABD\)và tam giác \(EBD\)có:
\(AB=EB\)
\(\widehat{ABD}=\widehat{EBD}\)
\(BD\)cạnh chung
\(\Rightarrow\Delta ABD=\Delta EBD\left(c.g.c\right)\)
\(\Rightarrow\widehat{DEB}=\widehat{DAB}=90^o\)
do đó \(DE\perp BC\).
\(DE=DA\Rightarrow D\)thuộc đường trung trực của \(AE\).
\(BA=BE\)suy ra \(B\)thuộc đường trung trực của \(AE\).
Do đó \(BD\)là đường trung trực của \(AE\)nên \(AE\)vuông góc với \(BD\).
b) \(AD=DE< DC\)(cạnh góc vuông nhỏ hơn cạnh huyền)
c) Xét tam giác \(ADF\)và tam giác \(EDC\)có:
\(DA=DE\)
\(CE=FA\)
\(\widehat{DAF}=\widehat{DEC}\left(=90^o\right)\)
\(\Rightarrow\Delta ADF=\Delta EDC\left(c.g.c\right)\)
d) \(\Delta ADF=\Delta EDC\)suy ra \(\widehat{CDE}=\widehat{ADF}\)mà hai góc này ở vị trí đối đỉnh nên \(E,D,F\)thẳng hàng.
a)Xét ΔABD và ΔEBD có:
AB=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\left(gt\right)\)
BD:cạnh chung
=> ΔABD=ΔEBD(c.g.c)
=> \(\widehat{BAD}=\widehat{BED}=90^o\)
=> \(DE\perp BC\)
Vì: ΔABD=ΔEBD(cmt)
=>AD=DE
Vì: AB=BE(gt) ; AD=DE(cmt)
=> B,D thuộc vào đường trung trực của đt AE
=>BD là đường trung trực của đt AE
=>\(AE\perp BD\)
b) Xét ΔDEC vuông tại E(cmt)
=> \(DE< DC\)
Mà: DE=AD
=> AD<DC
c)Vì: BF=BA+AF ; BC=BE+EC
Mà: BF=BC(gt); BE=BA(gt)
=>AF=EC
Xét ΔADF và ΔEDC có:
AF=EC(cmt)
\(\widehat{FAD}=\widehat{DEC}=90^o\left(cmt\right)\)
AD=DE(cmt)
=>ΔADF=ΔEDC(c.g.c)
xét \(\Delta ABD\) và \(\Delta EBD\) có
\(\hept{\begin{cases}\widehat{ABD}=\widehat{EBD}\\AB=BE\\chungBD\end{cases}}\)
=> 2 tam giác = nhau và có AD=DE(ĐPCM)
b)tí nữa có gì giải cho sau nhé, h mik phải ăn cơm rồi
A: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
=>DA=DE và góc BED=90 độ
b: BA=BE
DA=DE
=>BD là trung trực của AE
DA=DE
DE<DC
=>DA<DC
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
BA=BE
=>ΔBAD=ΔBED
=>AD=ED
b: BA=BE
DA=DE
=>BD là trung trực của AE
AD=DE
DE<DC
=>AD<DC
c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
AF=EC
=>ΔDAF=ΔDEC
=>góc ADF=góc EDC
=>góc ADF+góc ADE=180 độ
=>E,D,F thẳng hàng
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
Suy ra: AD=ED
b: Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
Do đó: ΔADF=ΔEDC
c: Ta có: ΔADF=ΔEDC
nên DF=DC và AF=EC
Ta có: BA+AF=BF
BE+EC=BC
mà BA=BE
và AF=EC
nên BC=BF
hay B nằm trên đường trung trực của CF(1)
Ta có: DF=DC
nên D nằm trên đường trung trực của CF(2)
Từ (1) và (2) suy ra BD\(\perp\)CF
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
=>DA=DE
b: Xet ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADF=góc EDC
=>ΔDAF=ΔDEC
=>góc ADF=góc EDC
=>góc ADF+góc ADE=180 độ
=>F,D,E thẳng hàng
c: BA=BE
DA=DE
=>BD là trung trực của AE
AD=DE
DE<DC
=>AD<DC
Bài 1:
a: Xét ΔABE và ΔDBE có
BA=BD
\(\widehat{ABE}=\widehat{DBE}\)
BE chung
Do đó: ΔABE=ΔDBE
a: Xét ΔDAB và ΔDEB có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔDAB=ΔDEB
=>góc DEB=90 độ
=>DE vuông góc BC
b: AD=DE
mà DE<DC
nên AD<DC
c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
AF=EC
=>ΔDAF=ΔDEC