So sánh:
2022/2021*2023 ... 2021/2022*2022
Làm giúp shii đi shii tick cho uy tín lun đúng hay sai k bt :33
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{2024x2022-4048}{2020x2024+4040}\)
\(A=\dfrac{2024x2022-2x2024}{2020x2024+2x2020}\)
\(A=\dfrac{2024x\left(2022-2\right)}{2020x\left(2024+2\right)}\)
\(A=\dfrac{2024x2020}{2020x2026}\)
\(A=\dfrac{2024}{2026}\)
\(A=\dfrac{1012}{1013}\)
2023/2022=1+1/2022
2022/2021=1+1/2021
mà 2022>2021
nên 2023/2022<2022/2021
a: \(B=\dfrac{154}{155+156}+\dfrac{155}{155+156}\)
\(\dfrac{154}{155}>\dfrac{154}{155+156}\)
\(\dfrac{155}{156}>\dfrac{155}{155+156}\)
=>154/155+155/156>(154+155)/(155+156)
=>A>B
b: \(C=\dfrac{2021+2022+2023}{2022+2023+2024}=\dfrac{2021}{6069}+\dfrac{2022}{6069}+\dfrac{2023}{6069}\)
2021/2022>2021/6069
2022/2023>2022/2069
2023/2024>2023/6069
=>D>C
Ta có:
\(2023^{2022}=2023\cdot2023^{2021}\)
\(2022^{2022}+2022^{2021}=2022^{2021}\cdot\left(2022+1\right)=2023\cdot2022^{2021}\)
Mà: \(2023>2022\)
\(\Rightarrow2023^{2021}>2022^{2021}\)
\(\Rightarrow2023^{2021}\cdot2023>2022^{2021}\cdot2023\)
\(\Rightarrow2023^{2022}>2022^{2022}+2022^{2021}\)
Vậy: ...
B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + \(\dfrac{2022}{1}\)
B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + 2022
B = 1 + ( 1 + \(\dfrac{1}{2022}\)) + ( 1 + \(\dfrac{2}{2021}\)) + \(\left(1+\dfrac{3}{2020}\right)\)+ ... + \(\left(1+\dfrac{2021}{2}\right)\)
B = \(\dfrac{2023}{2023}\) + \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2021}\) + \(\dfrac{2023}{2020}\) + ...+ \(\dfrac{2023}{2}\)
B = 2023 \(\times\) ( \(\dfrac{1}{2023}\) + \(\dfrac{1}{2022}\) + \(\dfrac{1}{2021}\) + \(\dfrac{1}{2020}\)+ ... + \(\dfrac{1}{2}\))
Vậy B > C
2020/2021<1
2021/2022<1
2022/2023<1
2023/2020=1+1/2020+1/2020+1/2020>1+1/2021+1/2022+1/2023
=>B>2020/2021+2021/2022+2022/2023+1/2021+1/2022+1/2023+1=4
Không cần tính, ta thấy : 2022/2021 > 2021/2022
Vậy : 2022/2021*2023 > 2021/2022*2022