Tìm x để căn thức sau có nghĩa:
\(\sqrt{\frac{x^2+1}{1-x}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\sqrt{2x+10}+\frac{1}{x^2+4}\)
Căn thức có nghĩa khi
\(\begin{cases}2x+10\ge0\\x^2-4\ne0\end{cases}\)
\(\Leftrightarrow\begin{cases}x\ge-5\\\begin{cases}x\ne2\\x\ne-2\end{cases}\end{cases}\)
Vật căn thức có nghĩa khi \(x>-6;x\ne\pm2\)
b)
\(\sqrt{\frac{x^2+1}{x-1}}\)
Căn thưc có nghĩa khi
\(\begin{cases}\left(x^2+1\right)\left(x-1\right)\ge0\\x-1\ne0\end{cases}\)
Mà \(x^2+1\ge1\) => x - 1 >0
\(x+1>0\)
\(\Leftrightarrow x>-1\)
Để y có nghĩa
\(\Leftrightarrow\hept{\begin{cases}x^2-5x+6\ge0\\x-1\ge0\\\sqrt{x-1}\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2-5x+25-19\ge0\\x\ge1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-5\right)^2-19\ge0\\x\ge1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-5\right)^2\ge19\\x\ge1\end{cases}}\)
Đến đây tự làm được rồi nhỉ ??
a) \(\sqrt{1-x^2}\) có nghĩa
\(\Leftrightarrow1-x^2\ge0\)
\(\Leftrightarrow\left(1-x\right)\left(x+1\right)\ge0\)
\(\Leftrightarrow-1\le x\le1\)
b) \(\sqrt{\frac{1}{\left(x-5\right)^2}}\)có nghĩa
\(\Leftrightarrow\frac{1}{\left(x-5\right)^2}>0\)
\(\Leftrightarrow x\ne5\)
Vậy .............
a) Để \(\sqrt{1-x^2}\)có nghĩa
\(\Rightarrow\)\(1-x^2\ge0\)
\(\Leftrightarrow\)\(\left(1-\sqrt{x}\right).\left(1+\sqrt{x}\right)\ge0\)
Vì \(\sqrt{x}\ge0\forall x\)\(\Rightarrow\)\(\sqrt{x}+1\ge1>0\forall x\)
mà \(\left(1-\sqrt{x}\right).\left(1+\sqrt{x}\right)\ge0\)
\(\Rightarrow\)\(1-\sqrt{x}\ge0\)
\(\Leftrightarrow\)\(\sqrt{x}\le1\)
\(\Leftrightarrow\)\(x\le1\)
Vậy để \(\sqrt{1-x^2}\)có nghĩa thì \(x\le1\)
b) Để \(\sqrt{\frac{1}{\left(x-5\right)^2}}\)có nghĩa
\(\Rightarrow\)\(\sqrt{\frac{1}{\left(x-5\right)^2}}\ge0\)
\(\Leftrightarrow\)\(\frac{1}{\left|x-5\right|}\ge0\)
Vì \(1>0\)mà \(\frac{1}{\left|x-5\right|}\ge0\)
\(\Rightarrow\)\(\left|x-5\right|>0\)( vì là mẫu số )
\(\Leftrightarrow\)\(x-5>0\)
\(\Leftrightarrow\)\(x>5\)
Vậy để \(\sqrt{\frac{1}{\left(x-5\right)^2}}\)có nghĩa thì \(x>5\)
a: ĐKXĐ: 5-4x>=0
=>x<=5/4
b: ĐKXĐ: x thuộc R
c: ĐKXĐ: x-2<0
=>x<2
Để căn thức trên có nghĩa thì:
\(\sqrt{x-2}-1\ge0\)
<=> \(\sqrt{x-2}\ge1\)
<=> \(x-2\ge1\)
<=> \(x\ge3\)
\(\sqrt{\frac{x^2+1}{1-x}}\)có nghĩa khi
\(\frac{x^2+1}{1-x}\ge0\)
ta thấy x2+1\(\ge\)0 nên để
\(\frac{x^2+1}{1-x}\ge0\)thì 1-x\(\ge\)0
mà 1-x\(\ne\)0
1-x>0
<=>x>1
vậy x>1 thì căn thức có nghĩa