K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2023

A B C D E F M N

\(\widehat{AMB}=\widehat{AME}+\widehat{EMB}=3\widehat{EMB}+\widehat{EMB}=4\widehat{EMB}=180^o\)

\(\Rightarrow\widehat{EMB}=180^o:4=45^o\) 

Ta có

\(\widehat{AME}+\widehat{EMB}+\widehat{MND}=\widehat{AMB}+\widehat{MND}=225^o\)

\(\Rightarrow180^o+\widehat{MND}=225^o\Rightarrow\widehat{MND}=225^o-180^o=45^o\) 

Gọi O là giao của AB và CD xét tg OMN có

\(\widehat{MON}=180^o-\left(\widehat{EMB}+\widehat{MND}\right)=180^o-\left(45^o+45^o\right)=90^o\)

\(\Rightarrow AB\perp CD\)

25 tháng 8 2023

cảm ơn minh

3 tháng 1 2018

Ta có: AME ^ + EMB ^ = 180 ∘  (hai góc kề bù)

Mà  AME ^ = 3 EMB ^

⇒ 3 EMB ^ + EMB ^ = 180 ∘

⇒ 4 EMB ^ = 180 ∘

⇒ EMB ^ = 180 ∘ : 4

⇒ EMB ^ = 45 ∘                                         (1)

Ta có:  AME ^ + EMB ^ + MND ^ = 225 ∘

⇒ 180 ∘ + MND ^ = 225 ∘

⇒ MND ^ = 225 ∘ − 180 ∘

⇒ MND ^ = 45 ∘                                        (2)

Từ (1) và (2) suy ra EMB ^ = MND ^  mà hai góc này ở vị trí đồng vị

AB // CD

21 tháng 11 2018
  1. tính góc MND
  2. tính góc AMN
  3. tính góc EMB
  4. AB // CD
HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

a) Ta có: đường thẳng a là đường trung trực của đoạn thẳng AB và CD nên \(a \bot AB;a \bot CD\).

Suy ra: AB // CD.

b) Đường thẳng a là đường trung trực của đoạn thẳng AB và CD nên MN là đường trung trực của đoạn thẳng AB và CD. Suy ra: MD = MC.

Xét tam giác vuông MNC và tam giác vuông MND có: ND = NC; MD = MC.

Vậy \(\Delta MNC = \Delta MND\)(cạnh huyền – cạnh góc vuông).

c) \(\Delta MNC = \Delta MND\)nên \(\widehat {CMN} = \widehat {DMN}\).

Mà \(\widehat {AMN} = \widehat {BMN} = 90^\circ \Rightarrow \widehat {AMN} - \widehat {DMN} = \widehat {BMN} - \widehat {CMN}\).

Vậy \(\widehat {AMD} = \widehat {BMC}\).

d) Xét hai tam giác AMD và BMC có:

     MA = MB;

     \(\widehat {AMD} = \widehat {BMC}\);

     MD = MC.

Vậy \(\Delta MAD = \Delta MBC\)(c.g.c). Suy ra: \(AD = BC,\widehat A = \widehat B\) (cặp cạnh và góc tương ứng).

e) \(\Delta MAD = \Delta MBC\) nên \(\widehat {ADM} = \widehat {BCM}\) (2 góc tương ứng).

\(\Delta MNC = \Delta MND\) nên \(\widehat {MCN} = \widehat {MDN}\) (2 góc tương ứng).

Vậy \(\widehat {ADM} + \widehat {MDN} = \widehat {BCM} + \widehat {MCN}\) hay \(\widehat {ADC} = \widehat {BCD}\).