K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2017

mình đang cần gấp lắm 

4 tháng 7 2017

Ta thấy rằng:

Phân số: 3/5 là phân số nhỏ hơn 1

5/11 < 1

7/21 < 1

9/35 < 1

Và 3/11 < 1

5/21 < 1

7/35 < 1

9/53 < 1

Tất cả phân số đều nhỏ hơn 1

= > Phép tính trên nhỏ hơn 1

22 tháng 7 2016

Đặt \(A=\frac{3}{5.11}+\frac{5}{11.21}+\frac{7}{21.35}+\frac{9}{35.53}\)

\(2A=\frac{6}{5.11}+\frac{10}{11.21}+\frac{14}{21.35}+\frac{18}{35.53}\)

\(2A=\frac{1}{5}-\frac{1}{11}+\frac{1}{11}-\frac{1}{21}+\frac{1}{21}-\frac{1}{35}+\frac{1}{35}-\frac{1}{53}\)

\(2A=\frac{1}{5}-\frac{1}{53}\)

\(2A=\frac{48}{265}\)

\(A=\frac{48}{265}:2\)

\(A=\frac{24}{265}\)

Vì \(\frac{24}{265}< 1\)nên \(A< 1\)(Điều phải chứng tỏ)

Ủng hộ mk nha !!! ^_^

20 tháng 7 2015

So sánh hay chứng minh vậy bạn

18 tháng 12 2015

Ta có:

S=1+3+5+7+9+...+2009+2011

S=[(2011-1):2+1].(2011+1):2

S=1006.2012:2

S=1006.(2012:2)

S=1006.1006

S=10062

=> S là số chính phương

a, Gói 5 số tự nhiên liên tiếp là a,á+1,a+2.a+3.a+4(a thuộc N)

+Nếu a chia hết cho 5 , bài toán giải xong

+ Nếu a chia 5 dư 1, đặt a=5b+1(b thuộc N ) ta có a+4=5b+1+4=(5b+5) chia hết cho 5

+ Nếu a chia 5 dư 2, đặt a=5c+2 (c thuộc N) ta có a+3=5c+2+3=(5c+5) chia hết cho 5

+ Nếu a chia 5 dư 3 , đặt a=5d+3(d thuộc N) ta có a+2=5đ +3+2=(5d+5) chia hết cho5

+ Nếu a chia 5 dư 3, đặt a= 5e +4 ( e thuốc N ) ta có  a+1=5e+4+1=(5e+5) chia hết cho 5

Vậy trong 5 số tự nhiên liên tiếp, có một số chia hết  cho 5

b, 19 m+19m+1,19m+2,19m+3,19m+4 là 5 số tự nhiên liên tiếp nên theo câu a có 1 số chia hết cho 5 ma 19m ko chia hết cho 5 với mọi m thuộc N 

do đó : 19m+1,19m+2,19m+3,19m+4 có 1 số chia hết cho 5

=>(19m+1);(19m+2) (19m+3), (19m+4) chia hết cho 5

28 tháng 12 2016

bài này mình chụi

17 tháng 12 2023

\(S=1+3+3^2+...+3^9\)

Ta có: \(S=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^8+3^9\right)\)

\(S=4+3^2.\left(1+3\right)+...+3^8.\left(1+3\right)\)

\(S=4+3^2.4+...+3^8.4\)

\(S=4.\left(1+3^2+...+3^8\right)\)

Vì \(4⋮4\) nên \(4.\left(1+3^2+...+3^8\right)⋮4\)

Vậy \(S⋮4\).

\(#NqHahh\)

17 tháng 12 2023

giúp tôi với

6 tháng 8 2017

a)

Ta có :

\(81^7-27^9-9^{13}\)

= \(3^{28}-3^{27}-3^{26}\)

= \(3^{23}\left(3^5-3^4-3^3\right)\)

= \(3^{23}\cdot135=3^{23}\cdot3\cdot45\) chia hết cho 45

b)

\(5+5^2+5^3+.....+5^{120}\)

số số hạng là : (120 - 1) : 1 + 1 = 120 (số)

=>\(5+5^2+5^3+.....+5^{120}=\left(5+5^2\right)+\left(5^3+5^4\right)+......+\left(5^{119}+5^{120}\right)\)= \(5\left(1+5\right)+5^3\left(1+5\right)+....+5^{119}\left(1+5\right)\)

= \(5\cdot6+5^3\cdot6+......+5^{119}\cdot6\)

= \(6\left(5+5^3+.....+5^{119}\right)\) chia hết cho 6

\(5+5^2+5^3+.....+5^{120}\)

= \(5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+......+5^{118}\left(1+5+5^2\right)\)

= \(5\cdot31+5^4\cdot31+......+5^{118}\cdot31\)

= \(31\left(5+5^4+.......+5^{118}\right)\) chia hết cho 31

6 tháng 8 2017

1.

a) Ta có: \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)

\(=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}.5\)* Lại có : \(5⋮5\Rightarrow5.3^{26}⋮5\)

\(3^{26}⋮3^2=9\Rightarrow3^{26}.5⋮9\)

Mặt khác, do \(\left(5,9\right)=1\Rightarrow3^{26}.5⋮5.9=45\)

Vậy \(87^7-27^9-9^{13}⋮45\left(đpcm\right)\)

b) Đặt \(A=5+5^2+...+5^{120}\)

\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{119}+5^{120}\right)\)

\(A=\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{118}\left(5+5^2\right)\)

\(A=\left(5+5^2\right)\left(1+5^2+...+5^{118}\right)\)

\(A=30.\left(1+5^2+...+5^{118}\right)\)

Do \(30⋮6\Rightarrow30\left(1+5^2+...5^{118}\right)⋮6\left(1\right)\)

Tương tự, \(A=\left(5+5^2+5^3\right)+...+\left(5^{118}+5^{119}+5^{120}\right)\)

\(A=\left(5+5^2+5^3\right)+...+5^{117}\left(5+5^2+5^3\right)\)

\(A=\left(5+5^2+5^3\right)\left(1+...+5^{117}\right)\)

\(A=155\left(1+...+5^{117}\right)\)

Do \(155⋮31\Rightarrow155\left(1+...+5^{117}\right)⋮31\left(2\right)\)

Từ (1) và (2) => Đpcm.

tik mik nha !!!

16 tháng 3

a;

A = 109 + 108 + 107 

A = 107.(102 + 10 + 1)

A = 106.2.5.(100 + 10 + 1)

A = 106.2.5.111

A = 106.2.555 ⋮ 555 (đpcm)

16 tháng 3

b;

B = 817 - 279 - 919

B = 914 - 39.99 - 919

B = 914 - 3.38.99 - 919

B = 914 - 3.94.99 - 919

B = 914 - 3.913 - 919

B = 913.(9 - 3 - 96)

B = 913.(9 - 3 - \(\overline{..1}\))

B = 913.(6 - \(\overline{..1}\))

B = 913.\(\overline{..5}\)

B ⋮ 9; B ⋮ 5

\(\in\) BC(9; 5)  = 9.5 = 45

B ⋮ 45 (đpcm)

 

5 tháng 11 2017

\(B=3+3^3+3^5+3^7+3^9+...+3^{39}\)

\(B=\left(3+3^3+3^5\right)+3^6\left(3+3^3+3^5\right)+...+3^{34}\left(3+3^3+3^5\right)\)

\(B=\left(3+3^3+3^5\right)\left(1+3^6+...+3^{34}\right)\)