K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Thay x=2 và y=9 vào (d), ta được:

2(m+4)+m-1=9

=>2m+8+m-1=9

=>3m=2

=>m=2/3

b: thay x=-1 và y=-7 vào (d), ta được:

-(m+4)+m-1=-7

=>-m-4+m-1=-7

=>-5=-7(vô lý)

AH
Akai Haruma
Giáo viên
31 tháng 8 2023

Thay A(4,1) bạn nhé.

Thay A(0,1) vào hàm số y ta có: 

\(\left(m-3\right).4+3m-1=1\Leftrightarrow4m-12+3m-1=0\)

\(\Leftrightarrow7m-13=0\Leftrightarrow7m=13\Leftrightarrow m=\dfrac{13}{7}\)

Để hàm số y=(m-2)x+4+m là hàm số bậc nhất thì \(m-2\ne0\)

hay \(m\ne2\)

a) Để đồ thị hàm số y=(m-2)x+4+m đi qua điểm A(1;2) thì 

Thay x=1 và y=2 vào hàm số y=(m-2)x+4+m, ta được

\(\left(m-2\right)\cdot1+4+m=2\)

\(\Leftrightarrow m-1+4+m=2\)

\(\Leftrightarrow2m+3=2\)

\(\Leftrightarrow2m=-1\)

hay \(m=-\dfrac{1}{2}\)(nhận)

Vậy: Để đồ thị hàm số y=(m-2)x+4+m đi qua điểm A(1;2) thì \(m=-\dfrac{1}{2}\)

24 tháng 1 2021

Giúp mình ý b với

5 tháng 9 2023

1) \(y=mx+1\left(m\ne0\right)\left(1\right)\) hay \(mx-y+1=0\)

Để đồ thị hàm số \(\left(1\right)\) đi qua điểm \(M\left(-1;-1\right)\) khi và chỉ khi

\(m.\left(-1\right)+1=-1\)

\(\Leftrightarrow-m=-2\)

\(\Leftrightarrow m=2\)

Vậy hàm số \(\left(1\right):y=2x+1\)

Bạn tự vẽ đồ thị nhé!

2) \(y=\left(m^2-2\right)x+2m+3\left(d\right)\)

Để \(\left(1\right)//\left(d\right)\) khi và chỉ khi

\(\left\{{}\begin{matrix}m^2-2=2\\2m+3\ne1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2=4\\2m\ne-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=\pm2\\m\ne-1\end{matrix}\right.\) \(\Leftrightarrow m=\pm2\) thỏa đề bài

3) Khoảng cách từ gốc O đến đồ thị hàm số \(\left(1\right)\) là:

\(d\left(O;\left(1\right)\right)=\dfrac{m.0-0+1}{\sqrt[]{2^2+1^2}}=\dfrac{2}{\sqrt[]{5}}\)

\(\Leftrightarrow\dfrac{0.m+1}{\sqrt[]{5}}=\dfrac{2}{\sqrt[]{5}}\)

\(\Leftrightarrow0m=1\)

\(\Leftrightarrow m\in\varnothing\)

Vậy không có giá trị nào của m để thỏa mãn đề bài,

5 tháng 9 2023

Đáp án:

1. Tìm m để đồ thị hàm số (1) đi qua điểm M (−1;−1). Với m tìm được, vẽ đồ thị hàm số (1) trên mặt phẳng tọa độ Oxy

Để đồ thị hàm số (1) đi qua điểm M (−1;−1), ta cần có m(−1)+1=−1. Từ đó ta có m=−2.

Với m=−2, đồ thị hàm số (1) là một đường thẳng có hệ số góc -2 và đi qua điểm M (−1;−1). Ta có thể vẽ đồ thị hàm số như sau:

[Image of the graph of y=-2x+1]

2. Tìm giá trị của m để đồ thị hàm số (1) song song với đường thẳng y (m² - 2) x + 2m+3 =

Hai đường thẳng song song khi hệ số góc của chúng bằng nhau. Do đó, ta có m=m2−2. Từ đó ta có m=2.

3. Tìm m để khoảng cách từ gốc O đến đồ thị hàm số (1) bằng 2 √5

Khoảng cách từ gốc O đến đồ thị hàm số (1) là khoảng cách từ điểm (0;1) đến đường thẳng y=mx+1. Khoảng cách này được tính theo công thức:

 

d=|m|

Do đó, ta có d=2552=2.

Từ đó, ta có m=2.

Kết luận:

  • Giá trị của m để đồ thị hàm số (1) đi qua điểm M (−1;−1) là m=-2.
  • Giá trị của m để đồ thị hàm số (1) song song với đường thẳng y (m² - 2) x + 2m+3 = là m=2.
  • Giá trị của m để khoảng cách từ gốc O đến đồ thị hàm số (1) bằng 2 √5 là m=2.

Lưu ý:

  • Để giải bài toán 1 và 2, ta có thể thay m=-2 vào hàm số (1) và so sánh với tọa độ của điểm M (−1;−1) hoặc tọa độ của một điểm bất kỳ trên đường thẳng y (m² - 2) x + 2m+3 =.
  • Để giải bài toán 3, ta có thể sử dụng công thức tính khoảng cách từ một điểm đến một đường thẳng.

chúc bạn học tốt

5 tháng 9 2023

1. Đồ thị của hàm số đi qua điểm \(M\left(2;3\right)\) nên giá trị hoành độ và tung độ của \(M\) là nghiệm của phương trình đường thẳng trên, tức:

\(3=m\cdot2+m-6\Leftrightarrow m=3\left(TM\right)\)

 

2. Đồ thị hàm số song song với đường thẳng \(\left(d\right):y=3x+2\), khi: \(\left\{{}\begin{matrix}m=3\\m-6\ne2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\ne8\end{matrix}\right.\Rightarrow m=3\left(TM\right)\)

 

3. Gọi \(P\left(x_0;y_0\right)\) là điểm cố định mà đồ thị hàm số đi qua với mọi giá trị \(m\).

Khi đó: \(mx_0+m-6=y_0\Leftrightarrow\left(x_0+1\right)m-\left(y_0+6\right)=0\left(I\right)\)

Suy ra, phương trình \(\left(I\right)\) có vô số nghiệm, điều này xảy ra khi: \(\left\{{}\begin{matrix}x_0+1=0\\y_0+6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=-6\end{matrix}\right.\).

Vậy: Điểm cố định mà đồ thị hàm số luôn đi qua với mọi giá trị \(m\) là \(P\left(-1;-6\right)\).

 

19 tháng 8 2018

câu hỏi xàm xàm

25 tháng 12 2019

dit me may

16 tháng 12 2023

a: Thay x=-1 và y=2 vào (d), ta được:

\(-\left(m-2\right)+n=2\)

=>-m+2+n=2

=>-m+n=0

=>m-n=0(1)

Thay x=3 và y=-4 vào (d), ta được:

\(3\left(m-2\right)+n=-4\)

=>3m-6+n=-4

=>3m+n=2(2)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}m-n=0\\3m+n=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m-n+3m+n=2\\m-n=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4m=2\\n=m\end{matrix}\right.\Leftrightarrow n=m=\dfrac{1}{2}\)

b: Thay x=0 và \(y=1-\sqrt{2}\) vào (d), ta được:

\(0\left(m-2\right)+n=1-\sqrt{2}\)

=>\(n=1-\sqrt{2}\)

Vậy: (d): \(y=\left(m-2\right)x+1-\sqrt{2}\)

Thay \(x=2+\sqrt{2}\) và y=0 vào (d), ta được:

\(\left(m-2\right)\cdot\left(2+\sqrt{2}\right)+1-\sqrt{2}=0\)

=>\(\left(m-2\right)\left(2+\sqrt{2}\right)=\sqrt{2}-1\)

=>\(m-2=\dfrac{\sqrt{2}-1}{2+\sqrt{2}}=\dfrac{-4+3\sqrt{2}}{2}\)

=>\(m=\dfrac{-4+3\sqrt{2}+4}{2}=\dfrac{3\sqrt{2}}{2}\)

c: 2y+x-3=0

=>2y=-x+3

=>\(y=-\dfrac{1}{2}x+\dfrac{3}{2}\)

Để (d) vuông góc với đường thẳng y=-1/2x+3/2 thì

\(-\dfrac{1}{2}\left(m-2\right)=-1\)

=>m-2=2

=>m=4

Vậy: (d): \(y=\left(4-2\right)x+n=2x+n\)

Thay x=1 và y=3 vào y=2x+n, ta được:

\(n+2\cdot1=3\)

=>n+2=3

=>n=1

d: 3x+2y=1

=>\(2y=-3x+1\)

=>\(y=-\dfrac{3}{2}x+\dfrac{1}{2}\)

Để (d) song song với đường thẳng \(y=-\dfrac{3}{2}x+\dfrac{1}{2}\) thì

\(\left\{{}\begin{matrix}m-2=-\dfrac{3}{2}\\n\ne\dfrac{1}{2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=\dfrac{1}{2}\\n\ne\dfrac{1}{2}\end{matrix}\right.\)

Vậy: (d): \(y=\left(\dfrac{1}{2}-2\right)x+n=-\dfrac{3}{2}x+n\)

Thay x=1 và y=2 vào (d), ta được:

\(n-\dfrac{3}{2}=2\)

=>\(n=2+\dfrac{3}{2}=\dfrac{7}{2}\left(nhận\right)\)

26 tháng 4 2016

Ta có : \(y'=3x^2-2\left(m-1\right)x+3m+1\)

Gọi \(M\left(x_0;y_0\right)\) là tiếp điểm, ta có : \(x_0=1\Rightarrow y_0=3m+1,y'\left(1\right)=m+6\)

Phương trình tiếp tuyến tại M  : \(y=\left(m+6\right)\left(x-1\right)+3m+1\)

Tiếp tuyến đi qua A \(\Leftrightarrow-1=m+6+3m+1\Leftrightarrow m=-2\)

Vậy m = -2 là giá trị cần tìm

23 tháng 6 2021

Vì hs y = (m-1)x +m +3 đi qua điểm (1; -4) nên ta đc :

-4 = (m-1) + m+3

<=> -4 = 2m + 2

<=> m =-3

23 tháng 6 2021

1) Đặt tên cho dễ giải nè:

(d1) : y= (m-1) x + m+ 3

(d2) : y = -2x + 1

(d1) // (d2) <=> m - 1 = -2 và m+ 3 \(\ne\)1

<=> m = -1 và m \(\ne\)-2