A,32/1.3+32/3.5+...+32/97.99
/ là phần nha.Giải hộ mik
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{6}{1\cdot3}+\frac{6}{3\cdot5}+\cdot\cdot\cdot+\frac{6}{97\cdot99}\)
\(\Rightarrow B=3\cdot\left(\frac{2}{1\cdot3}+\cdot\cdot\cdot+\frac{2}{97\cdot99}\right)\)
\(\Rightarrow B=3\cdot\left(1-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{97}-\frac{1}{99}\right)\)
\(\Rightarrow B=3\cdot\left(1-\frac{1}{99}\right)\)
\(\Rightarrow B=3\cdot\frac{98}{99}\)
\(\Rightarrow B=\frac{98}{33}\)
\(A=\frac{1}{2}+\frac{1}{6}+\cdot\cdot\cdot+\frac{1}{42}\)
\(\Rightarrow A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdot\cdot\cdot+\frac{1}{6\cdot7}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{6}-\frac{1}{7}\)
\(\Rightarrow A=1-\frac{1}{7}\)
\(\Rightarrow A=\frac{6}{7}\)
A = 2/1.3 + 2/3.5 + 2/5.7 + ... + 2/2017. 2019
= ( 1 - 1/3 ) + ( 1/3 - 1/5 ) + ... + (1/2017 - 1/2019 )
= 1 - 1/2019
= 2018/2019
S = 1/31 + 1/32 +...+ 1/60
Ta có các phân số : 1/31, 1/32, ..., 1/59 đều lớn hơn 1/60
Nên S > 1/60 + 1/60 + 1/60 +...+ 1/60 ( có tất cả 30 phân số )
= 30/60 = 1/2
Vì 1/2 < 4/5 nên S <4/5
Vậy, chứng tỏ S < 4/5
Chúc bạn học tốt !
\(\dfrac{2^2}{1\times3}\times\dfrac{3^2}{2.4}\times\dfrac{4^2}{3.5}\times\dfrac{5^2}{4.6}=\dfrac{2^2.3^2.4^2.5^2}{1.3.2.4.3.5.4.6}=\dfrac{2^2.3^2.4^2.5^2}{1.2.3.3.4.4.5.2.3}=\dfrac{2^2.3^2.4^2.5^2}{3^3.2^2.4^2.5.1}=\dfrac{5}{3.1}=\dfrac{5}{3}\)
\(\dfrac{2^2}{1\cdot3}\cdot\dfrac{3^2}{2\cdot4}\cdot\dfrac{4^2}{3\cdot5}\cdot\dfrac{5^2}{4.6}\\ =\dfrac{2^2\cdot3^2\cdot4^2\cdot5^2}{1\cdot3\cdot2\cdot4\cdot3\cdot5\cdot4\cdot6}\\ =\dfrac{2^2\cdot3^2\cdot4^2\cdot5^2}{1\cdot2\cdot4^2\cdot4^2\cdot5\cdot6}\\ =\dfrac{2\cdot5}{6}=\dfrac{5}{3}\)
Bài làm:
Ta có: Đặt \(A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
\(A=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}>\frac{32}{100}=32\%\)
=> Biểu thức trên > 32%
=> đpcm
Dạ đề nghị bạn Vũ Ngọc Tuấn không spam linh tinh lên bài làm nữa nhé!
A = 1( 2+1 ) + 2( 3+1 ) + 3( 4+1 ) +...+ 97( 98+1 ) + 98( 99+1 )
A = 1.2 + 1.1 + 2.3 + 2.1 + 3.4 + 3.1 +...+ 97.98 +97.1 + 98.99 + 98.1
A = ( 1.2 + 2.3 + 3.4 +...+ 97.98 + 98.99 ) + ( 1 + 2 + 3 +....+ 97 + 98)
A = 323400 + 4851 = 328251
Đề sai nhá dãy số lẻ ko thể kết thúc bằng số chẵn đc :
Đề này nhá \(A=\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+.....+\frac{4}{99.101}\)
\(\Rightarrow A=2\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{99.101}\right)\)
\(\Rightarrow A=2\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{99}-\frac{1}{101}\right)\)
\(\Rightarrow A=2\left(1-\frac{1}{101}\right)\)
\(\Rightarrow A=2.\frac{100}{101}=\frac{200}{101}\)
\(A=\frac{4}{1.3}+\frac{4}{3.5}+....+\frac{4}{98.100}\)
\(A=2.\left(\frac{2}{1.3}+\frac{2}{3.5}+.........+\frac{2}{98.100}\right)\)
\(A=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{98}-\frac{1}{100}\right)\)
\(A=2.\left(1-\frac{1}{100}\right)\)
\(A=2.\frac{99}{100}\)
\(A=\frac{99}{50}\)
\(\frac{2}{9}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(\frac{2}{9}.\left(\frac{1}{1}-\frac{1}{99}\right)\)
\(\frac{2}{9}.\frac{98}{99}=\frac{196}{891}\)
Ta có : \(A=\frac{3^2}{1.3}+\frac{3^2}{3.5}+.....+\frac{3^2}{97.99}\)
\(\Rightarrow A=\frac{3^2}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{97.99}\right)\)
\(\Rightarrow A=\frac{9}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{97}-\frac{1}{99}\right)\)
\(\Rightarrow A=\frac{9}{2}.\left(1-\frac{1}{99}\right)\)
\(\Rightarrow A=\frac{9}{2}.\frac{98}{99}=\frac{49}{11}\)