Tìm điều kiện để hai phương trình sau có ít nhất một nghiệm chung:
\(2x^2-\left(3m+2\right)x+12=0\)(1)
\(4x^2-\left(9m-2\right)x+36=0\)(2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Trước tiên, cần tìm đk của $m$ để 2 PT có nghiệm.
\(\left\{\begin{matrix} \Delta_1=(3m+2)^2-8.12>0\\ \Delta_2=(9m-2)^2-576>0\end{matrix}\right.(*)\)
Gọi nghiệm chung của 2 pt trên là $a$
Ta có: \(\left\{\begin{matrix} 2a^2-(3m+2)a+12=0\\ 4a^2-(9m-2)a+36=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 4a^2-2(3m+2)a+24=0\\ 4a^2-(9m-2)a+36=0\end{matrix}\right.\)
\(\Rightarrow a(m-2)=4\)
Để $a$ tồn tại thì $m-2\neq 0$. Khi đó $a=\frac{4}{m-2}$
Thế vào PT(1):
\(2(\frac{4}{m-2})^2-(3m+2).\frac{4}{m-2}+12=0\)
Giải PT trên ta thu được $m=3$ (thỏa mãn $(*)$)
Vậy.....
\(x^3+3x^2+2x=0\Rightarrow x\left(x+1\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=-2\end{matrix}\right.\)
\(\left(x+1\right)\left(x^2+2x+1+a\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x^2+2x+1=-a\end{matrix}\right.\)
Vì 2 pt đã có nghiệm chung là \(-1\Rightarrow\) nghiệm của pt \(\left(x+1\right)^2=-a\) phải khác \(0,2\)
\(\Rightarrow a\ne-1;-9\)
(cách mình là vậy chứ mình cũng ko chắc là có đúng ko nữa)
Giải sai rồi Tiểu Ma Bạc Hà
Để Vì (1) = 0 , (2) = 0
=> \(2x^2-\left(3m+2\right)x+12=4x^2-\left(9m-2\right)x+36\) = 0
\(\Leftrightarrow2x^2-3mx-2x+12=4x^2-9mx+2x+36=0\)
\(\Leftrightarrow6mx=2x^2+4x+24=0\)
\(\Leftrightarrow3mx=x^2+2x+12=0\) (*)
Vì \(x^2+2x+12=x^2+2x+1+11=\left(x+1\right)^2+11\ge11\) , mâu thuẫn với (*)
=> Không tìm được điều kiện để hai phương trình có 1 nghiệm chung