K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2017

Ta có:

\(\left(a^2+4b^2+3c^2\right)-\left(20a+12b-6c-14\right)\)

\(=a^2+4b^2+3c^2-20a-12b-6c-14\)

\(=\left(a^2-2.a.10+100\right)+\left[\left(2b\right)^2-2.2b.3+9\right]+3\left(c^2+2c+1\right)-98\)

\(=\left(a-10\right)^2+\left(2b-3\right)^2+3\left(c+1\right)^2-98\ge-98\)

Vậy đề bài vô lý

5 tháng 8 2023

\(\left(a-1\right)^2\ge0\Rightarrow a^2+1-2a\ge0\Rightarrow a^2+1\ge2a\left(1\right)\)

\(\left(2b-3\right)^2\ge0\Rightarrow4b^2+9-12b\ge0\Rightarrow4b^2+9\ge12b\left(2\right)\)

\(\left(c\sqrt[]{3}-\sqrt[]{3}\right)^2\ge0\Rightarrow3c^2+3-6c\ge0\Rightarrow3c^2+3\ge6c\left(3\right)\)

\(\left(1\right)+\left(2\right)+\left(3\right)\Rightarrow a^2+1+4b^2+9+3c^2+3\ge2a+12b+6c\)

\(\Rightarrow a^2+4b^2+3c^2+1+9+3\ge2a+12b+6c\)

\(\Rightarrow a^2+4b^2+3c^2+13\ge2a+12b+6c\)

\(\Rightarrow a^2+4b^2+3c^2\ge2a+12b+6c-13\)

mà \(2a+12b+6c-13>2a+12b+6c-14\)

\(\Rightarrow a^2+4b^2+3c^2>2a+12b+6c-14\)

\(\Rightarrow dpcm\)

5 tháng 8 2023

 (luôn đúng)

 BĐT ban đầu đúng

19 tháng 12 2021

a: \(\Leftrightarrow a^2-4a+4+b^2-6b+9+c^2-2c+1>=0\)

\(\Leftrightarrow\left(a-2\right)^2+\left(b-3\right)^2+\left(c-1\right)^2>=0\)

Dấu '=' xảy ra (a,b,c)=(2;3;1)

19 tháng 12 2021

Câu b làm sao v á.

2 tháng 12 2019

\(a^2+4b^2+3c^2+14\ge2a+12b+6c\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(4b^2-12b+9\right)+3\left(c^2-2c+1\right)+1\ge0\)

2 tháng 12 2019

BĐT \(\Leftrightarrow\left(a^2-2a+1\right)+\left(4b^2-12b+9\right)+3\left(c^2-2c+1\right)\)

\(\Leftrightarrow\left(a-1\right)^2+\left(2b-3\right)^2+3\left(c-1\right)^2\ge0\)

Dấu "=" xảy ra khi và chỉ khi : \(\left\{{}\begin{matrix}a-1=0\\2b-3=0\\c-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=\frac{3}{2}\\c=1\end{matrix}\right.\)

Vậy ....

26 tháng 6 2017

Bạn lạ ghê cho đề mà không nêu yêu cầu lấy gì mọi người giải được.

26 tháng 6 2017

Yêu cầu đề bài đâu Hà Trung Chiến 

NV
6 tháng 4 2019

\(\Leftrightarrow a^2-2a+1+4b^2-12b+9+3c^2-6c+3+1>0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(2b-3\right)^2+3\left(c-1\right)^2+1>0\) (luôn đúng)

\(\Rightarrow\) BĐT ban đầu đúng

AH
Akai Haruma
Giáo viên
14 tháng 9

Lời giải:

$P=(4a^2+4ab+b^2)-12a-12b+3b^2+12$

$=(2a+b)^2-6(2a+b)+3b^2-6b+12$

$=(2a+b)^2-6(2a+b)+9+3(b^2-2b+1)$

$=(2a+b-3)^2+3(b-1)^2\geq 0+3.0=0$

Vậy $P_{\min}=0$

Giá trị này đạt tại $2a+b-3=b-1=0$

$\Rightarrow b=1; a=1$

AH
Akai Haruma
Giáo viên
14 tháng 9

Lời giải:

$P=(4a^2+4ab+b^2)-12a-12b+3b^2+12$

$=(2a+b)^2-6(2a+b)+3b^2-6b+12$

$=(2a+b)^2-6(2a+b)+9+3(b^2-2b+1)$

$=(2a+b-3)^2+3(b-1)^2\geq 0+3.0=0$

Vậy $P_{\min}=0$

Giá trị này đạt tại $2a+b-3=b-1=0$

$\Rightarrow b=1; a=1$

3 tháng 4 2018

Bài này cũng dễ 

Chuyển hết qua 1 vế ta được

a^2+4b^2+3c^2–2a–12b–6c >0

<=> (a–1)^2+(2b–3)^2+3(c–1)^2 >0

Vì bất đẳng thức cuối đúng 

Nên cái đề

3 tháng 4 2018

Số cộng lại có đủ 14 ko z bạn

26 tháng 11 2017