K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2023

a,(1033+8)⋮18=>Ta cần chứng minh:(1033+8)⋮2 và 9

1033+8 có chữ số tận cùng là 8 nên ⋮2

1033+8 có tổng các chữ số là 9 nên ⋮9

Vậy 1033+8⋮18.

b,(1010+14)⋮6 =>Ta cần chứng minh:(1010+14)⋮2 và 3

1010+14 có chữ số tận cùng là 4 nên ⋮ 2

1010+14 có tổng các chữ số của nó là 6 nên ⋮3

=>1010+14⋮6.

7 tháng 8 2023

......................... =) 1010 + 14 ⋮ 6

8 tháng 8 2023

a/

\(10^{33}⋮2;8⋮2\Rightarrow\left(10^{33}+8\right)⋮2\)

\(10^{33}+8=999...99+1+8=999...99+9\) (33 chữ số 9)

\(999...99+9⋮9\Rightarrow\left(10^{33}+8\right)⋮9\)

Mà 2 và 9 là 2 số nguyên tố cùng nhau

\(\Rightarrow\left(10^{33}+8\right)⋮2x9\Rightarrow\left(10^{33}+8\right)⋮18\)

b/

\(10^{10}⋮2;14⋮2\Rightarrow\left(10^{10}+14\right)⋮2\)

\(10^{10}+14=999..99+1+14=999...99+15⋮3\) (10 chữ số 9)

\(\Rightarrow\left(10^{10}+14\right)⋮3\)

2 và 3 là 2 số nguyên tố cùng nhau

\(\Rightarrow\left(10^{10}+14\right)⋮2x3\Rightarrow\left(10^{10}+14\right)⋮6\)

8 tháng 8 2023

a) (1033 +8) ⋮ 18

=> Ta phải CM được (1033 +8) ⋮ 2; (1033 +8) ⋮ 9

+) 1033 +8 = \(\overline{...0}+8=\overline{........8}\)

Vì (1033 +8)  có chữ số tận cùng là chẵn => (1033 +8) ⋮ 2

+) (1033 +8) có tổng các chữ số = 9 =>  (1033 +8) ⋮ 9

CMR: (1033 +8) ⋮ 18

b) (1010 + 14) ⋮ 6

=> Ta phải Cm được (1010 + 14) ⋮2 ;(1010 + 14) ⋮ 3

+) (1010 + 14) = \(\overline{......00}+14=\overline{..........14}\)

Vì (1010 + 14) có chữ số tận cùng là số chẵn => (1010 + 14) ⋮ 2

+) Vì (1010 + 14) có tổng các chữ số = 6 => (1010 + 14) ⋮ 3

đã CMR: (1010 + 14) ⋮6

28 tháng 10 2023

hi

10 tháng 8 2017

a ) 18 = 9 . 2

Vì 1023 + 8 có tận cùng là 8 nên chia hết cho 2

     1023 + 8 có tổng các chữ số là 1 + 0 + 0 + .... + 8 = 9 nên chia hết cho 9 

Vậy 1023 + 8 chia hết cho 18

b ) 6 = 3.2

Tổng các chữ số của 1010 + 14 là 1 + 1 + 4 + 0 + 0 + 0 + .... + 0 = 6 nên chia hết cho 3

Tận cùng của 1010 + 14 là chẵn nên chia hết cho 2 .

Vậy 1010 + 14 chia hết cho 6

18 tháng 2 2020

2. b)

Vì 332 chia a dư 17 nên ( 332-17) \(⋮\)a => 315\(⋮\)a

Vì 555 chia a dư 15 nên ( 555-15)\(⋮\)a =>540\(⋮\)a

Vì 315\(⋮\)a mà 540\(⋮\)a nên a \(\in\)ƯCLN( 315;540)

315= 32.5.7

540= 22..33.5

ƯCLN(315;540) =5.32= 45

Vậy...

Ko chắc

18 tháng 2 2020

2

a) ta có : aaa . bbb 

             =a . 111 . b . 111

             =a . 37.3 .b .111

=>   a.37.3.b.111 chia hết cho 37 hay aaa.bbb chia hết cho 37

mình nghĩ thế , ko chắc đúng đâu nhé

16 tháng 8 2017

a, Ta có :

\(8^7-2^{18}\)

\(=\left(2^3\right)^7-2^{18}\)

\(=2^{21}-2^{18}\)

\(=2^{18}\left(2^3-1\right)\)

\(=2^{18}.7\)

\(=2^{17}.2.7\)

\(=2^{17}.14⋮14\)

\(\Leftrightarrow8^7-2^{18}⋮14\rightarrowđpcm\)

b, \(10^6-5^7\)

\(=\left(2.5\right)^6-5^7\)

\(=2^6.5^6-5^7\)

\(=2^6.5^6-5^6.5\)

\(=5^6\left(2^6-5\right)\)

\(=5^6.59⋮59\)

\(\Leftrightarrow10^6-5^7⋮59\rightarrowđpcm\)

16 tháng 8 2017

\(8^7-2^{18}\)

\(=\left(2^3\right)^7-2^{18}\)

\(=2^{21}-2^{18}\)

\(=2^{18}.2^3-2^{18}.1\)

\(=2^{18}.\left(2^3-1\right)\)

\(=2^{18}.7\)

\(=2^{17}.14⋮14\rightarrowđpcm\)

\(10^6-5^7\)

\(=\left(2.5\right)^6-5^7\)

\(=2^6.5^6-5^7\)

\(=64.5^6-5^6.5\)

\(=5^6\left(64-5\right)\)

\(=5^6.59⋮59\rightarrowđpcm\)

4 tháng 2 2020

a) \(8^7-2^{18}=\left(2^3\right)^7-2^{18}=2^{21}-2^{18}\)

\(=2^{17}\left(2^4-2\right)=2^{17}.\left(16-2\right)=2^{17}.14⋮14\)

4 tháng 2 2020

Bổ sung phần b)

\(10^6-5^7=2^6.5^6-5^6.5=5^6\left(2^6-5\right)=5^6\left(64-5\right)=5^6.59⋮59\)

9 tháng 7 2016

a)Câu này mình sửa dấu "-" thành dấu "+", vì nếu là dấu "-" thì sẽ sai đề

\(10^6+5^7=2^6.5^6+5^7=5^6\left(2^6+5\right)=5^6.69\) chia hết cho 69

=>106+57 chia hết cho 69 (đpcm)

b)\(8^7-2^{18}=\left(2^3\right)^7-2^{18}=2^{21}-2^{18}=2^{17}\left(2^4-2\right)=2^{17}.14\) chia hết cho 14

=>87-218 chia hết cho 14 (đpcm)

26 tháng 10 2021

\(bx^2=ay^2\Leftrightarrow\dfrac{x^2}{a}=\dfrac{y^2}{b}\Leftrightarrow\left(\dfrac{x^2}{a}\right)^{1010}=\left(\dfrac{y^2}{b}\right)^{1010}\\ \Leftrightarrow\dfrac{x^{2020}}{a^{1010}}=\dfrac{y^{2020}}{a^{1010}}\)

Áp dụng t/c dtsbn:

\(\dfrac{x^{2020}}{a^{1010}}=\dfrac{y^{2020}}{b^{1010}}=\dfrac{x^{2020}+y^{2020}}{a^{1010}+b^{1010}}\left(3\right)\)

Đặt \(\dfrac{x^2}{a}=\dfrac{y^2}{b}=k\Leftrightarrow x^2=ak;y^2=bk\)

\(x^2+y^2=1\Leftrightarrow ak+bk=1\Leftrightarrow k\left(a+b\right)=1\Leftrightarrow a+b=\dfrac{1}{k}\)

\(\Leftrightarrow\dfrac{2}{\left(a+b\right)^{1010}}=\dfrac{2}{\left(\dfrac{1}{k}\right)^{1010}}=2:\dfrac{1}{k^{1010}}=k^{1010}\left(1\right)\)

Mà \(\dfrac{x^{2020}}{a^{1010}}=\dfrac{\left(x^2\right)^{1010}}{a^{1010}}=\dfrac{a^{1010}k^{1010}}{a^{1010}}=k^{1010}\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\left(3\right)\) ta được đpcm