a) chứng tỏ rằng nếu a/b < c/d ( b > 0 , d > 0 ) thì a/b <a+c/b+d<c/d
b) hãy viết 3 số hữu tỉ xen giữa -1/3 và -1/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có a / b < c / d khi ad < bc (1)
Thêm ab vào 2 vế của (1), ta có: ad+ab <bc+ab
a(b+d) < b(a+c) suy ra a / b<(a+c) / (b+c) (2)
Thêm cd vào 2 vế của (1), ta có: ad +cd<bc+cd
d(a+c) <c(b+d) suy ra (a+c) / (b+d)<c / d (3)
Từ (2) và (3) suy ra: a / b < (a+c) / (b+d) < c / d
\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)
Có:
\(\Rightarrow\frac{a\left(b+d\right)}{b\left(b+d\right)}< \frac{b\left(a+c\right)}{b\left(b+d\right)}\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)
\(\Rightarrow\frac{d\left(a+c\right)}{d\left(b+d\right)}< \frac{c\left(b+d\right)}{d\left(b+d\right)}\)
\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
2/
a, |a+3|=7
Chia làm 2 trường hợp
TH1: TH2:
a+3=7 a+3=-7
a=7-3 a=-7-3
a=4 a=-11
b,|a-5|=(-5)+8
|a-5|=3
Chia làm 2 truờng hợp
TH1: TH2:
a-5=3 a-5=-3
a=3+5 a=-3+5
a=8 a=2
1/
a, Cộng 2 vế với y ta được :
x-y+y > 0+y
=> x > y
b, Trừ 2 vê với y ta được :
x-y > y-y
=> x-y >0
2/
a, => a+3=-7 hoặc a+3=7
=> a=-10 hoặc a=4
b, => |a-5| = 3
=> a-5=-3 hoặc a-5=3
=> a=2 hoặc a=8
Tk mk nha