K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2017

a) phải là a.d<b.c

 chứ ko phải a,d<b,c đâu

26 tháng 12 2016

a) xem lại thiếu cái đk gì đó

b) thích chọn số nào tùy

 \(\frac{1}{2}=\frac{2}{4}< \frac{3}{4}< \frac{4}{4}< \frac{5}{4}< \frac{6}{4}< \frac{7}{4}< \frac{8}{4}< \frac{9}{4}< \frac{10}{4}=\frac{5}{2}\)

19 tháng 8 2015

a) Ta có a / b < c / d khi ad < bc                                                                  (1)

Thêm ab vào 2 vế của (1), ta có:   ad+ab <bc+ab

                                                 a(b+d) < b(a+c) suy ra a / b<(a+c) / (b+c)    (2)

Thêm cd vào 2 vế của (1), ta có:   ad +cd<bc+cd

                                                 d(a+c) <c(b+d) suy ra (a+c) / (b+d)<c / d     (3)

Từ (2) và (3) suy ra: a / b < (a+c) / (b+d) < c / d

23 tháng 6 2015

bài này mk làm rồi, giờ giải lại à

Vì b,d>0 nênb+d>0

Ta có: a/b<c/d=>ad<bc(*)

Thêm ab vào 2 vế(*), ta được: ab+ad<ab+bc

=>a(b+d)<(a+c)b

=>a/b<a+c/b+d(1)

Thêm cd vào 2 vế (*), ta được: ad+cd<bc+cd

=>(a+c)d<(b+d)c

=>a+c/b+d<c/d(2)

Từ 1,2 => Nếu a/b<c/d thì a/b<a+c/b+d<c/d

4 tháng 6 2016

a) \(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có: 

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

\(\Rightarrow\left(a+b\right)\left(c-d\right)=\left(c+d\right)\left(a-b\right)\)

\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(đpcm)

b) Áp dụng kết quả phần a) và tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a+b}{a-b}=\frac{c+d}{c-d}=\frac{a+b+c+d}{a-b+c-d}=\frac{a+b-c-d}{a-b-c+d}\)(chỗ này mình phá ngoặc luôn nhé)

\(\Rightarrow\left(a+b+c+d\right)\left(a-b-c+d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\)(đpcm)