Tìm x, biết:
\(2x-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-...-\frac{1}{49.50}=7+\frac{1}{50}+x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\right)\) =\(\frac{349}{50}+x\)
\(x-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)\) \(=\frac{349}{50}\)
\(x-\left(1-\frac{1}{50}\right)=\frac{349}{50}\)
\(x-\frac{49}{50}=\frac{349}{50}\)
\(x=\frac{199}{25}\)
=> 2x- ( 1/2+1/6+1/12+..._1/ 49.50 )= 7-1/50+x
=> 2x -( 1/1.2 + 1/2.3+1/3.4+...+1/49.50)= 7-1/50+x
=> 2x - ( 1- 1/2+ 1/2-1/3+1/3-1/4+...+1/49-1/50) = 7-1/50 + x
=> 2x - ( 1-1/50) =7-1/50 + x
=> 2x- 1+ 1/50=7-1/50+ x
=> 1+1/50= 2x- (7 - 1/50+ x)
=> 1+1/50 = 2x- 7 + 1/50- x
=> 1+1/50 = x + 1/50 - 7
=> 1 = x + 1/50 - 7 - 1/50
=> 1 = x - 7
=> x = 7+ 1
=> x = 8
#)Giải :
\(2x-3=x+\frac{1}{2}\)
\(\Leftrightarrow2x-3-x+\frac{1}{2}=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=0\\x+\frac{1}{2}=0\end{cases}}\Rightarrow\orbr{\begin{cases}2x=3\\x=-\frac{1}{2}\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=-\frac{1}{2}\end{cases}}}\)
a) \(2x-3=x+\frac{1}{2}\)
\(\Leftrightarrow2x-x=\frac{1}{2}+3\)
\(\Leftrightarrow x=\frac{7}{2}\)
Vậy...
b) \(4x-\left(2x+1\right)=3-\frac{1}{3}+x\)
\(\Leftrightarrow4x-2x-1=3-\frac{1}{3}+x\)
\(\Leftrightarrow4x-2x-x=3-\frac{1}{3}+1\)
\(\Leftrightarrow x=\frac{11}{3}\)
Vậy ...
c) \(2x-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-...-\frac{1}{49.50}=7-\frac{1}{50}+x\)
\(\Leftrightarrow2x-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{49.50}\right)=\frac{349}{50}+x\)
\(\Leftrightarrow2x-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\right)=\frac{349}{50}+x\)
\(\Leftrightarrow2x-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)=\frac{349}{50}+x\)
\(\Leftrightarrow2x-\left(1-\frac{1}{50}\right)=\frac{349}{50}+x\)
\(\Leftrightarrow2x-\frac{49}{50}=\frac{349}{50}+x\)
\(\Leftrightarrow2x-x=\frac{349}{50}+\frac{49}{50}\)
\(\Leftrightarrow x=\frac{199}{25}\)
Vậy ...
d,
\(|x-\frac{1}{3}|=\frac{5}{6}\Rightarrow \left[\begin{matrix} x-\frac{1}{3}=\frac{5}{6}\\ x-\frac{1}{3}=-\frac{5}{6}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{7}{6}\\ x=\frac{-1}{2}\end{matrix}\right.\)
e,
\(\frac{3}{4}-2|2x-\frac{2}{3}|=2\)
\(\Leftrightarrow 2|2x-\frac{2}{3}|=\frac{3}{4}-2=\frac{-5}{4}\)
\(\Leftrightarrow |2x-\frac{2}{3}|=-\frac{5}{8}<0\) (vô lý vì trị tuyệt đối của 1 số luôn không âm)
Vậy không tồn tại $x$ thỏa mãn đề bài.
f,
\(\frac{2x-1}{2}=\frac{5+3x}{3}\Leftrightarrow 3(2x-1)=2(5+3x)\)
\(\Leftrightarrow 6x-3=10+6x\)
\(\Leftrightarrow 13=0\) (vô lý)
Vậy không tồn tại $x$ thỏa mãn đề bài.
a,
$0-|x+1|=5$
$|x+1|=0-5=-5<0$ (vô lý do trị tuyệt đối của một số luôn không âm)
Do đó không tồn tại $x$ thỏa mãn điều kiện đề.
b,
\(2-|\frac{3}{4}-x|=\frac{7}{12}\)
\(|\frac{3}{4}-x|=2-\frac{7}{12}=\frac{17}{12}\)
\(\Rightarrow \left[\begin{matrix} \frac{3}{4}-x=\frac{17}{12}\\ \frac{3}{4}-x=\frac{-17}{12}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-2}{3}\\ x=\frac{13}{6}\end{matrix}\right.\)
c,
\(2|\frac{1}{2}x-\frac{1}{3}|-\frac{3}{2}=\frac{1}{4}\)
\(2|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{4}\)
\(|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{8}\)
\(\Rightarrow \left[\begin{matrix} \frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\ \frac{1}{2}x-\frac{1}{3}=-\frac{7}{8}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{29}{12}\\ x=\frac{-13}{12}\end{matrix}\right.\)
\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{60}\)
\(=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+...+\frac{1}{50}+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)
2/ \(A=\frac{1}{2}+\frac{1}{12}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(A=\frac{7}{12}+\frac{1}{5.6}+\frac{1}{7.8}+...+\frac{1}{99.100}>\frac{7}{12}\)
Tương tự câu trên ta có: \(A=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(A=\frac{1}{51}+...+\frac{1}{60}+\frac{1}{61}+...+\frac{1}{70}+\frac{1}{71}+...+\frac{1}{80}+\frac{1}{81}+...+\frac{1}{90}+\frac{1}{91}+...+\frac{1}{100}\)
\(A< \frac{1}{50}+...+\frac{1}{50}+\frac{1}{60}+...+\frac{1}{60}+\frac{1}{70}+...+\frac{1}{70}+\frac{1}{80}+...+\frac{1}{80}+\frac{1}{90}+...+\frac{1}{90}\)
\(A< 10.\frac{1}{50}+10.\frac{1}{60}+10.\frac{1}{70}+10.\frac{1}{80}+10.\frac{1}{90}\)
\(A< \frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}< \frac{5}{6}\)
\(2x-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-....-\frac{1}{49.50}=7+\frac{1}{50}+x\)
\(2x-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+....+\frac{1}{49.50}\right)=7+\frac{1}{50}+x\)
\(2x-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{49.50}\right)=7+\frac{1}{50}+x\)
\(2x-\left(\frac{1}{1}-\frac{1}{50}\right)=7+\frac{1}{50}+x\)
\(2x-1+\frac{1}{50}=7+\frac{1}{50}+x\)
=> 2x - 1 = 7 + x
=> 2x - x = 7 + 1
=> x = 8