K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A=3(1+3)+3^3(1+3)+...+3^119(1+3)

=4(3+3^3+...+3^119) chia hết cho 4

A=3(1+3+3^2)+...+3^118(1+3+3^2)

=13(3+...+3^118) chia hết cho 13

31 tháng 10 2023

a/

\(A=3\left(1+3+3^2\right)+...+3^{118}\left(1+3+3^2\right)=\)

\(=13\left(3+3^4+3^7+...+3^{118}\right)⋮13\)

 

\(A=3\left(1+3+3^2+3^3\right)+...+3^{117}\left(1+3+3^2+3^3\right)=\)

\(A=40\left(3+3^5+3^9+...+3^{117}\right)⋮40\)

b/

\(A=3+3^2\left(1+3+3^2+...+3^{118}\right)=\)

\(=3+9\left(1+3+3^2+...+3^{118}\right)\) chia 9 dư 3 nên A không chia hết cho 9

c/

\(3A=3^2+3^3+3^4+...+3^{121}\)

\(\Rightarrow2A=3A-A=3^{121}-3\Rightarrow2A+3=3^{121}\)

\(2A+3=3^{121}=3.3^{120}=3.\left(3^4\right)^{30}=3.81^{30}\) có tận cùng là 3 nên 2A+3 không phải là số chính phương

9 tháng 12 2017

a, - A = 31 + 32 + 33 + ... + 3120

= (31+32) + (33+34) + ... + (3119+3120)

= (3+32) + 32(3+32) + ... + 3118(3+32)

= 12 + 32.12 + ... + 3118.12

= 12(1+32+34+...+3118) ⋮ 12 ⋮ 4

- A = 31 + 32 + 33 + ... + 3120

= (31+32+33) + (34+35+36) + ...+ (3118+3119+3120)

= (31+32+33) + 33(31+32+33) + ... + 3117(31+32+33)

= 39 + 33.39 + ... + 3117.39

= 39(1+33+36+...+3117) ⋮ 39 ⋮ 13

- Vì A chia hết cho 13 và 4. Mà ƯCLN(4,13) = 1 nên A chia hết cho (4.13) = 82

b,

Nhận thấy:

34n+1 = ...3 (theo quy tắc về chữ số tận cùng của một luỹ thừa, lên Youtube coi video của cô Huyền OLM)

=> 34n+2 = ...3.3 = ...9

34n+3 = ...9.3 = ...27 = ...7

34n = ...3: 3 = ...1

Mà 120: 4 = 30 (4 là số số luỹ thừa đc lặp lại)

=> A = (...3+...9+...7+...1).30 = ...0

Vậy CSTC của A là 0

c,

A = 31 + 32 + 33 + ... + 3120

=> 3A = 32 + 33 + 34 + ... + 3121

=> 3A - A = (32 + 33 + 34 + ... + 3121) - (31 + 32 + 33 + ... + 3120)

=> 2A = 3121 - 3

=> 2A + 3 = 3121

Vậy 2A + 3 là luỹ thừa của 3

P/s: Không phải 2A - 3

17 tháng 12 2017

a)

\(A=3+3^2+3^3+3^4+...+3^{120}\)

\(\Rightarrow3A=3.\left(3+3^2+3^3+3^4+...+3^{120}\right)\)

\(\Rightarrow3A=3^2+3^3+3^4+3^5+...+3^{121}\)

\(\Rightarrow3A-A=\left(3^2+3^3+3^4+3^5+...+3^{121}\right)-\left(3+3^2+3^3+3^4+...+3^{120}\right)\)

\(\Rightarrow2A=3^{121}-3\)

\(\Rightarrow A=\frac{3^{121}-3}{2}\)

b)

\(2A+3\)

\(=3^{121}-3+3\)

\(=3^{121}\)

Mà 3121 là lũy thừa của 3

\(\Rightarrow\) 2A + 3 là lũy thừa của 3.

22 tháng 7 2023

a, chứng tỏ A chia hết cho 40

a: A=3(1+3+3^2+3^3)+...+3^129(1+3+3^2+3^3)

=40(3+...+3^129) chia hết cho 40

b: A=(3+3^2+3^3)+....+3^129(3+3^2+3^3)

=39(1+...+3^129) chia hết cho 39

c: A chia hết cho 40

A chia hết cho 3

=>A chia hết cho BCNN(40;3)=120

12 tháng 12 2017

a, - A = 31 + 32 + 33 + ... + 3120

= (31+32) + (33+34) + ... + (3119+3120)

= (3+32) + 32(3+32) + ... + 3118(3+32)

= 12 + 32.12 + ... + 3118.12

= 12(1+32+34+...+3118) ⋮ 12 ⋮ 4

- A = 31 + 32 + 33 + ... + 3120

= (31+32+33) + (34+35+36) + ...+ (3118+3119+3120)

= (31+32+33) + 33(31+32+33) + ... + 3117(31+32+33)

= 39 + 33.39 + ... + 3117.39

= 39(1+33+36+...+3117) ⋮ 39 ⋮ 13

- Vì A chia hết cho 13 và 4. Mà ƯCLN(4,13) = 1 nên A chia hết cho (4.13) = 82

b,

Nhận thấy:

34n+1 = ...3 (theo quy tắc về chữ số tận cùng của một luỹ thừa, lên Youtube coi video của cô Huyền OLM)

=> 34n+2 = ...3.3 = ...9

34n+3 = ...9.3 = ...27 = ...7

34n = ...3: 3 = ...1

Mà 120: 4 = 30 (4 là số số luỹ thừa đc lặp lại)

=> A = (...3+...9+...7+...1).30 = ...0

Vậy CSTC của A là 0

c,

A = 31 + 32 + 33 + ... + 3120

=> 3A = 32 + 33 + 34 + ... + 3121

=> 3A - A = (32 + 33 + 34 + ... + 3121) - (31 + 32 + 33 + ... + 3120)

=> 2A = 3121 - 3

=> 2A + 3 = 3121

Vậy 2A + 3 là luỹ thừa của 3 

12 tháng 12 2017

thế rút gọn thì sao

27 tháng 12 2020

a, - A = 31 + 32 + 33 + ... + 3120

= (31+32) + (33+34) + ... + (3119+3120)

= (3+32) + 32(3+32) + ... + 3118(3+32)

= 12 + 32.12 + ... + 3118.12

= 12(1+32+34+...+3118) ⋮ 12 ⋮ 4

- A = 31 + 32 + 33 + ... + 3120

= (31+32+33) + (34+35+36) + ...+ (3118+3119+3120)

= (31+32+33) + 33(31+32+33) + ... + 3117(31+32+33)

= 39 + 33.39 + ... + 3117.39

= 39(1+33+36+...+3117) ⋮ 39 ⋮ 13

- Vì A chia hết cho 13 và 4. Mà ƯCLN(4,13) = 1 nên A chia hết cho (4.13) = 82

b,

Nhận thấy:

34n+1 = ...3 (theo quy tắc về chữ số tận cùng của một luỹ thừa, lên Youtube coi video của cô Huyền OLM)

=> 34n+2 = ...3.3 = ...9

34n+3 = ...9.3 = ...27 = ...7

34n = ...3: 3 = ...1

Mà 120: 4 = 30 (4 là số số luỹ thừa đc lặp lại)

=> A = (...3+...9+...7+...1).30 = ...0

Vậy CSTC của A là 0

c,

A = 31 + 32 + 33 + ... + 3120

=> 3A = 32 + 33 + 34 + ... + 3121

=> 3A - A = (32 + 33 + 34 + ... + 3121) - (31 + 32 + 33 + ... + 3120)

=> 2A = 3121 - 3

=> A = (3121 - 3):2

d,

 Ta có : 2A = 3121 - 3

=> 2A + 3 = 3121

Vậy 2A + 3 là luỹ thừa của 3 

 

 

 

Mình nghĩ thế

12 tháng 7 2018

ai tích mình mình tích lại cho

1 tháng 3 2020

k di

e he he

23 tháng 10 2015

TA CÓ:

A=30+3+32+33+........+311

(30+3+32+33)+....+(38+39+310+311)

3(0+1+3+32)+......+38(0+1+3+32

3.13+....+38.13 cHIA HẾT CHO 13 NÊN A CHIA HẾT CHO 13( đpcm)

 

4 tháng 8 2021
Fikj Hrtui