tìm x,y nguyên 25-y^=8.|x-2024|^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$y^2=36-8(x-2024)^2\leq 36$ (do $8(x-2024)^2\geq 0$)
$\Rightarrow y\leq 6$
Lại có: $y^2=36-8(x-2024)^2$ chẵn nên $y$ chẵn
$\Rightarrow y\in\left\{0; 2; 4; 6\right\}$
Nếu $y=0$ thì $8(x-2024)^2=36$
$\Rightarrow (x-2024)^2=\frac{36}{8}\not\in\mathbb{N}$ (loại)
Nếu $y=2$ thì $8(x-2024)^2=36-y^2=36-2^2=32$
$\Rightarrow (x-2024)^2=4\Rightarrow x-2024=\pm 2$
$\Rightarrow x=2026$ hoặc $x=2022$ (tm)
Nếu $y=4$ thì $8(x-2024)^2=36-4^2=20$
$\Rightarrow (x-2024)^2=\frac{20}{8}\not\in\mathbb{N}$ (loại)
Nếu $y=6$ thì $8(x-2024)^2=36-6^2=0$
$\Rightarrow x-2024=0$
$\Rightarrow x=2024$ (tm)
Vậy............
\(x^2-xy-2022x+2023y-2024=0\\\Leftrightarrow (x^2-2023x)-(xy-2023y)+(x-2023)-1=0\\\Leftrightarrow x(x-2023)-y(x-2023)+(x-2023)=1\\\Leftrightarrow(x-2023)(x-y+1)=1\)
Vì \(x,y\) nguyên nên \(x-2023;x-y+1\) có giá trị nguyên
mà \(\left(x-2023\right)\left(x-y+1\right)=1\)
nên ta có các trường hợp xảy ra là:
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2023=1\\x-y+1=1\end{matrix}\right.\\\left\{{}\begin{matrix}x-2023=-1\\x-y+1=-1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=y=2024\left(tm\right)\\\left\{{}\begin{matrix}x=2022\\y=2024\end{matrix}\right.\left(tm\right)\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(2024;2024\right);\left(2022;2024\right)\).
\(\text{#}Toru\)
\(\sqrt{x^2+2024}=\sqrt{x^2+xy+yz+zx}=\sqrt{\left(x+y\right)\left(z+x\right)}\ge\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}=\sqrt{xy}+\sqrt{xz}\)
Tương tự: \(\sqrt{y^2+2024}\ge\sqrt{xy}+\sqrt{yz}\)
\(\sqrt{z^2+2024}\ge\sqrt{xz}+\sqrt{yz}\)
Cộng vế:
\(P\ge\dfrac{2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)}{\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}=2\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{2024}{3}\)
y? thế em
y^2
nhe cj