Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(x\)nguyên nên \(\left(x-2005\right)^2\)nguyên.
Nếu \(\left(x-2005\right)^2=0\Leftrightarrow x=2005\): phương trình ban đầu tương đương với:
\(y^2-25=0\Leftrightarrow y=\pm5\)
Nếu \(\left(x-2005\right)^2=1\Leftrightarrow\orbr{\begin{cases}x=2006\\x=2004\end{cases}}\), phương trình ban đầu tương đương với:
\(8+y^2-25=0\Leftrightarrow y=\pm\sqrt{17}\)(không thỏa mãn)
Nếu \(\left(x-2005\right)^2=2\Leftrightarrow x=2005\pm\sqrt{2}\)(loại)
Nếu \(\left(x-2005\right)^2=3\Leftrightarrow x=2005\pm\sqrt{3}\)(loại)
Nếu \(\left(x-2005\right)^2\ge4\):
\(y^2-25=-8\left(x-2005\right)^2\le-8.4=-32\Leftrightarrow y^2\le-7\)(vô nghiệm)
Vậy các cặp \(\left(x,y\right)\)thỏa mãn là: \(\left(2005,5\right);\left(2005,-5\right)\).
Ta có: \(25-8\left(x-2016\right)^2=\left(y-1\right)^2\Rightarrow8\left(x-2016\right)^2+\left(y-1\right)^2=25\)
Vì \(\left(y-1\right)^2\ge0\Rightarrow8\left(x-2016\right)^2\le25\Rightarrow\left(x-2016\right)^2\le\frac{25}{8}\)
Vì (x - 2016)2 là số chính phương
=> (x - 2016)2 = 1 hoặc (x - 2016)2 = 0
Với \(\left(x-2016\right)^2=1\Rightarrow\left(y-1\right)^2=25-8=17\left(loại\right)\)
Với \(\left(x-2016\right)^2=0\Rightarrow x=2016\Rightarrow\left(y-1\right)^2=25\Rightarrow\orbr{\begin{cases}y-1=5\\y-1=-5\end{cases}\Rightarrow\orbr{\begin{cases}y=6\\y=-4\end{cases}}}\)
Vậy các cặp (x;y) là (2016;6);(2016;-4)
Dễ thấy rằng: 8(x-100)^2 chia hết cho 8
=> y^2 chia 8 dư 1
=> y E {1;3;5} (vì y^2 =< 25)
+) y=1 khi đó: 24=8(x-100)^2
=> 3=(x-100)^2 (3 không là số chính phương) (loại)
+) y=3 khí đó: 25-y^2=16=>(x-100)^2=2
2 không là số chính phương (loại)
+) y=5=> (x-100)^2=0
=> x=100 (thỏa mãn)
Vậy: y=5;x=100
Ta có: 8.(x-2013)2+y2=25
=>y2=25-8.(x-2013)2
Vì \(\left(x-2013\right)^2\ge0=>8.\left(x-2013\right)^2\ge0=>25-8.\left(x-2013\right)^2\le25-0\)
=>\(y^2\le25=>y\le5\)
=>\(y\in\left\{1,2,3,4,5\right\}=>y^2\in\left\{1,4,9,16,25\right\}\)
Vì 25:8 dư 1, 8.(x-2013)2 chia 8 dư 0
=>25-8.(x-2013)2 chia 8 dư 1
=>y2 chia 8 dư 1
mà \(y^2\in\left\{1,4,9,16,25\right\}\)
=>y2=25=>y=5
25-8.(x-2013)2=25
=>8.(x-2013)2=0
=>(x-2013)2=0
=>x-2013=0
=>x=2013
Vậy x=2013, y=5
\(8\left(x+1\right)^2+y^2=35\)(1)
Dễ suy ra được \(y^2\)lẻ\(\Leftrightarrow\)y lẻ
Từ (1) suy ra \(y^2\le35\Leftrightarrow-6< y< 6\)
Từ đó suy ra \(y\in\left\{\pm5;\pm3;\pm1\right\}\)
*Nếu \(y=\pm1\)\(\Rightarrow8\left(x+1\right)^2=34\left(L\right)\)
*Nếu \(y=\pm3\Rightarrow8\left(x+1\right)^2=26\left(L\right)\)
*Nếu \(y=\pm5\Rightarrow8\left(x+1\right)^2=10\left(L\right)\)
Vậy không có x,y cần tìm