Cho biết 111a + 25b chia hết cho 12 với a, b thuộc N. Chứng minh 9a + 13b chia hết cho 12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn xem lại đề bài nhé. Với \(a=1,b=9\) thì \(111a+25b=336⋮12\) nhưng \(9a+13b=126⋮̸12\). Mình nghĩ đề bài là chứng minh \(9a+3b⋮12\). Vì \(111a+25b⋮12\) nên \(108a+24b+3a+b⋮12\) hay \(3a+b⋮12\) hay \(9a+3b⋮12\).
Tổng (111a + 23b) + (9a + 13b) = 120a + 36b
=> 9a + 13b = (120a + 36b) - (111a + 23b)
Vì 120a + 36b chia hết cho 12 và 111a + 23b chia hết cho 12
=> (120a + 36b) - (111a + 23b) chia hết cho 12
=> 9a + 13b chia hết cho 12
Đặt A = 111a + 23b và B = 9a + 13b
Xét A + B = 111a + 23b + 9a + 13b
=> A + B = 120a + 36b
=> A + B = 12 ( 10a + 3b )
=> A + B chia hết cho 12
mà A chia hết cho 12 ( theo đề bài )
=> B chia hết cho 13
hay 9a + 13b chia hết cho 12
Tổng (111a + 23b) + (9a + 13b) = 120a + 36b => 9a + 13b = (120a + 36b) - (111a + 23b)
Vì 120a + 36b chia hết cho 12 và 111a + 23b chia hết cho 12
=> (120a + 36b) - (111a + 23b) chia hết cho 12 => 9a + 13b chia hết cho 12
1)Ta có \(A=12.\left(10a+3b\right)\)( đã sửa 120b thành 120a )
Vì\(a,b\in N\Rightarrow10a+3b\in N\)
Do đó\(12.\left(10a+3b\right)⋮12\)
Vậy\(A⋮12\)
2)
a) Ta có \(2a+7b=2a+b+6b=\left(2a+b\right)+6b\)chia hết cho 3
Có \(6b⋮3\)mà\(\left(2a+b\right)+6b⋮3\)nên \(2a+b⋮3\)( \(A+B⋮C\)mà\(B⋮C\)\(\Rightarrow A⋮C\))
\(2a+b⋮3\Rightarrow2.\left(2a+b\right)⋮3\)\(\Rightarrow4a+2b⋮3\)
b) Ta có \(a+b⋮2\)lại có \(2b⋮2\)
nên \(\left(a+b\right)+2b⋮2\)hay\(a+3b⋮2\)
c) Ta có \(12a⋮12\);\(36b⋮12\)
nên \(12a+36b⋮12\)
Mà \(12a+36b=\left(11a+2b\right)+\left(a+34b\right)\)
nên \(\left(11a+2b\right)+\left(a+34b\right)⋮12\)
\(11a+2b⋮12\)\(\Rightarrow a+34b⋮12\)( \(A+B⋮C\)mà\(B⋮C\)\(\Rightarrow A⋮C\))
d) 1\(12b⋮12\)là điều hiển nhiên nên thiếu giả thiết để chứng minh
P/S Sai đề rất nhiều, mong bạn trước khi đăng hãy kiểm tra lại đề hoặc xem thử có bị cô troll hay không