b) Tìm x;y thuộc Z thỏa mãn
(x-1)*(y+2)=7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Để $B$ là phân số thì $x+3\neq 0\Leftrightarrow x\neq -3$
b. Để $B$ nhận giá trị nguyên thì $x+3$ là ước của $7$
$\Rightarrow x+3\in\left\{1;-1;7;-7\right\}$
$\Rightarrow x\in\left\{-2; -4; 4; -10\right\}$
c. Để $B< 0$ thì $7$ và $x+3$ trái dấu nhau. Mà $7>0$ nên $x+3<0$
$\Leftrightarrow x<-3$
d. Để $B$ đạt giá trị lớn nhất thì $x+3$ là số dương nhỏ nhất.
Với $x$ nguyên, $x+3$ dương nhỏ nhất bằng $1$
Khi đó: $B_{\max}=\frac{7}{1}=7$. Giá trị này đạt tại $x+3=1$ hay $x=-2$
Bài 3:
a) Đặt f(x)=0
\(\Leftrightarrow x^2-4x+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
b) Đặt f(x)=0
\(\Leftrightarrow x^2-7x+12=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
Bài 3:
c) Đặt f(x)=0
\(\Leftrightarrow x^2+2x+1=0\)
\(\Leftrightarrow\left(x+1\right)^2=0\)
\(\Leftrightarrow x+1=0\)
hay x=-1
d) Đặt f(x)=0
\(\Leftrightarrow x^4+2=0\)
\(\Leftrightarrow x^4=-2\)(Vô lý)
a) \(A\left(x\right)=x^2-10x+25\)
\(\Rightarrow A\left(x\right)=\left(x-5\right)^2\)
\(\Rightarrow\left\{{}\begin{matrix}A\left(0\right)=\left(0-5\right)^2=25\\A\left(-1\right)=\left(-1-5\right)^2=36\end{matrix}\right.\)
b) \(A\left(x\right)+B\left(x\right)=6x^2-5x+25\)
\(\Rightarrow B\left(x\right)=6x^2-5x+25-A\left(x\right)\)
\(\Rightarrow B\left(x\right)=6x^2-5x+25-\left(x^2-10x+25\right)\)
\(\Rightarrow B\left(x\right)=6x^2-5x+25-x^2+10x-25\)
\(\Rightarrow B\left(x\right)=5x^2+5x\)
\(\Rightarrow B\left(x\right)=5x\left(x+1\right)\)
c) \(A\left(x\right)=\left(x-5\right)C\left(x\right)\)
\(\Rightarrow C\left(x\right)=\dfrac{\left(x-5\right)^2}{x-5}=x-5\left(x\ne5\right)\)
d) Nghiệm của B(x)
\(\Leftrightarrow B=0\)
\(\Leftrightarrow5x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\) là nghiệm của B(x)
a:
Sửa đề: A=x^4-9x^3+21x^2+x+a
A chia hết cho B
=>x^4-2x^3-7x^3+14x^2+7x^2-14x+15x-30+a+30 chia hết cho x-2
=>a+30=0
=>a=-30
b: A chia hết cho B
=>x^4+2x^3-12x^3-24x^2+45x^2+90x-82x-164+a+164 chia hết cho x+2
=>a+164=0
=>a=-164
(x-1)(y+2) = 7
=> x-1 ; y+2 \(\in\) Ư(7) = { 1,7,-1,-7 }
Ta có bảng :
Vậy ta có các cặp x,y là (2,5) ; (8,-1) ; (0;-9) ; (-6;-3)
( x - 1 ) . ( y + 2 ) = 7
Lập bảng ta có :