Cho tam giác ABC vuông tại A kẻ đường cao AH. Biết AB=4cm, AC=7,5 cm. Tính HB,HC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tam giác ABC vuông tại A
=>tanB=\(\dfrac{AC}{AB}=\dfrac{7.5}{4}=1.875\)
=>gócB=62 độ
=>gócC=90-62=28 độ
tam giác ABH có góc H=90 độ
=>cosB=\(\dfrac{BH}{AB}=\dfrac{BH}{4}=0.47\)
=>BH=4*0.47=1.88cm
có \(AB^2=BH\cdot BC\)
hay \(4^2=1.88\cdot BC\)
=>BC=\(\dfrac{16}{1.88}\)=8.5cm
=> HC=BC-BH=6.62cm
bạn vẽ hình nha mk ko biết vẽ sorry
Áp dung định lí pytago vào tam giác ABC vuông tại A đường cao AH ta có:
\(AB^2+AC^2=BC^2\)
hay \(4^2+3^2=BC^2\)
\(\Rightarrow BC^2=16+9\)
\(\Rightarrow BC^2=25\)
\(\Rightarrow BC=5\left(cm\right)\)
Áp dụng hệ thức giữa cạnh và đường vào tam giác vuông \(ABC\)vuông tại \(A\) đường cao \(AH\) ta có:
+ \(AB^2=BH.BC\)
hay \(4^2=HB.5\)
\(\Rightarrow HB=16:5\)
\(\Rightarrow HB=3,2\left(cm\right)\)
+ \(AC^2=HC.BC\)
hay \(3^2=HC.5\)
\(\Rightarrow HC=9:5\)
\(\Rightarrow HC=1,8\left(cm\right)\)
vậy \(HB=3,2cm\)
\(HC=1,8cm\)
Lời giải:
Áp dụng định lý Pitago cho tam giác vuông $ABH$:
$BH=\sqrt{AB^2-AH^2}=\sqrt{5^2-4^2}=3$ (cm)
Áp dụng hệ thức lượng trong tam giác vuông:
$AH^2=BH.CH\Rightarrow CH=\frac{AH^2}{BH}=\frac{4^2}{3}=\frac{16}{3}$ (cm)
$BC=BH+CH=3+\frac{16}{3}=\frac{25}{3}$ (cm)
$AC=\sqrt{AH^2+CH^2}=\sqrt{4^2+(\frac{16}{3})^2}=\frac{20}{3}$ (cm)
Áp dụng HTL tam giác:
\(\left\{{}\begin{matrix}AH^2=BH\cdot HC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}HC=\dfrac{AH^2}{BH}=\dfrac{16}{3}\left(cm\right)\\AB^2=3\left(3+\dfrac{16}{3}\right)=25\left(cm\right)\\AC^2=\dfrac{16}{3}\left(3+\dfrac{16}{3}\right)=\dfrac{400}{9}\left(cm\right)\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}HC=\dfrac{16}{3}\left(cm\right)\\AB=5\left(cm\right)\\AC=\dfrac{20}{3}\left(cm\right)\end{matrix}\right.\)
\(BC=\sqrt{AB^2+AC^2}=\dfrac{25}{3}\left(cm\right)\left(pytago\right)\)
a) \(AH^2=HB.HC=50.8=400\)
\(\Rightarrow AH=20\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}.20\left(50+8\right)=\dfrac{1}{2}.20.58\left(cm^2\right)\)
mà \(S_{ABC}=\dfrac{1}{2}AB.AC\)
\(\Rightarrow AB.AC=20.58=1160\)
Theo Pitago cho tam giác vuông ABC :
\(AB^2+AC^2=BC^2\)
\(\Rightarrow\left(AB+AC\right)^2-2AB.AC=BC^2\)
\(\Rightarrow\left(AB+AC\right)^2=BC^2+2AB.AC\)
\(\Rightarrow\left(AB+AC\right)^2=58^2+2.1160=5684\)
\(\Rightarrow AB+AC=\sqrt[]{5684}=2\sqrt[]{1421}\left(cm\right)\)
Chu vi Δ ABC :
\(AB+AC+BC=2\sqrt[]{1421}+58=2\left(\sqrt[]{1421}+29\right)\left(cm\right)\)
Bài 2:
Xét ΔABC có
\(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{25}{13}\left(cm\right)\\CH=\dfrac{144}{13}\left(cm\right)\end{matrix}\right.\)
Bài 1:
Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)
\(\Leftrightarrow HB=\dfrac{25}{36}HC\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=900\)
\(\Leftrightarrow HC=36\left(cm\right)\)
hay HB=25(cm)
\(1,\dfrac{AB}{AC}=\dfrac{5}{6}\Leftrightarrow AB=\dfrac{5}{6}AC\)
Áp dụng HTL tam giác
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Leftrightarrow\dfrac{1}{900}=\dfrac{1}{\dfrac{25}{36}AC^2}+\dfrac{1}{AC^2}\\ \Leftrightarrow\dfrac{1}{900}=\dfrac{36}{25AC^2}+\dfrac{1}{AC^2}\\ \Leftrightarrow\dfrac{1}{900}=\dfrac{36+25}{25AC^2}\Leftrightarrow\dfrac{1}{900}=\dfrac{61}{25AC^2}\\ \Leftrightarrow25AC^2=54900\Leftrightarrow AC^2=2196\Leftrightarrow AC=6\sqrt{61}\left(cm\right)\\ \Leftrightarrow AB=\dfrac{5}{6}\cdot6\sqrt{61}=5\sqrt{61}\\ \Leftrightarrow BC=\sqrt{AB^2+AC^2}=61\left(cm\right)\)
Áp dụng HTL tam giác:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=...\\CH=\dfrac{AC^2}{BC}=...\end{matrix}\right.\)
Bài 1:
Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)
\(\Leftrightarrow HB=\dfrac{25}{36}HC\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=900\)
\(\Leftrightarrow HC=36\left(cm\right)\)
hay HB=25(cm)
TK:
Ta có tam giác vuông ABC với đường cao AH.
Theo định nghĩa, đường cao AH là đoạn thẳng vuông góc với cạnh đối diện và đi qua đỉnh của tam giác.
Vì tam giác ABC vuông tại A, nên AH là đường cao của tam giác.
Áp dụng định lý Pythagoras trong tam giác vuông ABC, ta có:
\(AB^2+AC^2=BC^2\)
\(4^2+7,5^2=BC^2\)
\(16+56,25=BC^2\)
\(72,25=BC^2\)
\(BC\approx8,5cm\)
Vì AH là đường cao của tam giác ABC, nên AH chia BC thành hai đoạn HB và HC.
\(HB=BC\times\left(\dfrac{AB}{AC}\right)\)
\(HB=8,5\times\left(\dfrac{4}{7,5}\right)\)
\(HB\approx4,53cm\)
\(HC=BC-HB\)
\(HC=8,5-4,53\)
\(HC\approx3,97cm\)
Vậy \(HB\approx4,53cm\) và \(HC\approx3,97cm\)