K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2018

a,1/51 > 1/100

  1/52 > 1/100

   1/53 > 1/100

    ...

     1/100=1/100

=>H>1/100 + 1/100 + 1/100 +...+1/100

    H>50/100=1/2   

          1/51<1/50

         1/52<1/50

           ....

           1/100<1/50

=>H<1/50+1/50+...+1/50

     H<50/50=1

 Vay1/2<H<1

26 tháng 6 2023

Ta có: 151+152+...+175>175+175+...+175=2575=13

176+177+...+1100>1100+1100+...+1100=25100=14

=> S>13+14=712 (1)

Ta có: 151+152+...+175<150+150+...+150=2550=12

176+177+...+1100<175+175+...+175=2575=13

=> S<12+13=56 (2)

Từ (1) và (2) => 712 < S<56 ​( đpcm )

26 tháng 6 2023

Ta có:

- 1/51 > 1/75, 1/52 > 1/75 ...

=> 1/51 + 1/52 + ... + 1/75 > 1/75 + ... 1/75 = 25/75 = 1/3

- 1/76 > 1/100, 1/77 > 1/100 ...

=> 1/76 + 1/77 + ... + 1/100 > 1/100 + ... + 1/100 = 25/100 = 1/4

Từ đó : S = ( 1/51 + ... + 1/75 ) + ( 1/76 + ... + 1/100 ) > 1/3 + 1/3 = 7/12 (1)

- 1/51 < 1/50, 1/52 < 1/50 ... 

=> 1/51 + 1/52 + ... + 1/75 < 1/50 + ... 1/50 = 25/50 = 1/2

- 1/76 < 1/75, 1/77 < 1/75...

=> 1/76 + 1/77 + ... + 1/100 < 1/75 + ... + 1/75 = 25/75 = 1/3

Từ đó : S = ( 1/51 + ... + 1/75 ) + ( 1/76 + ... + 1/100 ) < 1/2 + 1/3 = 5/6 (2)

từ (1) và (2) => 5/6 > S > 7/12

* Chúc bn học tốt !!!

21 tháng 7 2022

45854

 

212122512122

1

1

1

1123

4564

454

3546434

 

13 tháng 8 2016

\(A=\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{75}\right)+\left(\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}\right)\)

Chia A làm 2 phần,mỗi phân 25 số hạng.

\(A>\frac{25.1}{75}+\frac{25.1}{100}\)

\(A>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)

Bé hơn em làm tương tự có điều để nguyên cả 50 p/số.

Chúc em học tốt^^

13 tháng 8 2016

bạn có thể giải cụ thể hơn cho mình được ko ?

mình chả hiểu gì cả

18 tháng 7 2019

Ta có :

S= 1/51 +1/52 +..+1/100

Vì 1/51>1/52>...>1/100 

=> S >1/100 * 50 =1/2 (1)

Vì 1/100 <1/99<...<1/51<1/50

=> S < 1/50 * 50=1 (2)

Từ (1),(2) => 1/2 < S<1

P=1/2^2+1/2^3+...+1/2^2018 

2P=1/2 +1/2^2 +...+1/2^2017

=> 2P-P= (1/2 +1/2^2 +...+1/2^2017)-(1/2^2+1/2^3+...+1/2^2018 )

=> P=1/2 -1/2^2018 <1/2 <3/4

18 tháng 7 2019

Ta có: \(\frac{1}{51}>\frac{1}{100};\frac{1}{52}>\frac{1}{100};...;\frac{1}{100}=\frac{1}{100}\)

\(\Rightarrow\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}>\frac{1}{100}.50=\frac{1}{2}\)

\(\Rightarrow S>\frac{1}{2}\)

Ta có \(\frac{1}{51}< \frac{1}{50};\frac{1}{52}< \frac{1}{50};...;\frac{1}{100}< \frac{1}{50}\)

\(\Rightarrow\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< \frac{1}{50}.50=1\)

\(\Rightarrow S< 1\)