K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2017

\(Q=x^2+y^2+xy=\left(x^2+y^2-2xy\right)+3xy=\left(x-y\right)^2+3xy=3xy+4\)

\(x-y=2\Rightarrow y=x-2\)thay vào Q ta được :

\(Q=3x\left(x-2\right)+4=3\left(x^2-2x\right)+4=3\left[\left(x^2-2x+1\right)-1\right]+4=3\left(x-1\right)^2+1\)

Vì \(3\left(x-1\right)^2\ge0\forall x\) nên \(Q=3\left(x-1\right)^2+1\ge1\forall x\)

Dấu "=" xảy ra <=> \(x=1\Rightarrow y=-1\)

Vậy GTNN của Q là 1 tại \(x=1;y=-1\)

17 tháng 6 2016

Từ x-y=2=>x=y+2

a)Thay x=y+2 vào P ta có:

\(P=xy+4=\left(y+2\right)y+4=y^2+2y+4=\left(y^2+2y+1\right)+3=\left(y^2+2.y.1+1^2\right)+3\)

\(=\left(y+1\right)^2+3\ge3\) với mọi y

Dấu "=" xảy ra <=> \(\left(y+1\right)^2=0\) <=> \(y=-1\) <=> \(x=1\)

Vậy...........

b)Thay x=y+2 vào Q ta có:

\(Q=x^2+y^2-xy=\left(y+2\right)^2+y^2-\left(y+2\right).y=y^2+4y+4+y^2-y^2-2y\)

\(=y^2-2y+4=\left(y^2-2y+1\right)+3=\left(y^2-2.y.1+1^2\right)+3=\left(y-1\right)^2+3\ge3\) với mọi y

Dấu "=" xảy ra <=> y=1 <=> x=2

Vậy.................

29 tháng 6 2016

\(Q=\frac{x^2+1,2xy+y^2}{x-y}=\frac{x^2-2xy+y^2+3,2xy}{x-y}\)

\(=\frac{\left(x-y\right)^2+48}{x-y}=\frac{\left(x-y\right)^2}{x-y}+\frac{48}{x-y}\)

\(=x-y+\frac{48}{x-y}\ge2\sqrt{48}=8\sqrt{3}\)

5 tháng 8 2016

1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)

 \(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)

max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)

5 tháng 8 2016

\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t

31 tháng 10 2018

\(\Rightarrow Q=\frac{\left(x-y\right)^2+14xy}{x-y}\) mà xy=5

\(\Rightarrow Q=\frac{\left(x-y\right)^2+70}{x-y}\)mà x>y nên x-y lớn hơn 0.

Áp dụng Cô si ta có : \(Q\ge\frac{2.\sqrt{\left(x-y\right)^2.70}}{x-y}=\frac{2.\sqrt{70}.\left(x-y\right)}{x-y}=2.\sqrt{70}\)

Dấu = xảy ra thì thế vào là được.