Cho tam giác ABC nhọn nội tiếp đường tròn tâm O (AB < AC). Hai đường cao AD, CE cắt nhau tại H
a) Giả sử góc A =60. Tính độ dài cung nhỏ BC và diện tích viên phân giới hạn bởi dây BC và cung nhỏ BC theo R
b) Kẻ đường kính AK cắt CE tại M, CK cắt AD tại F. Chứng minh: tứ giác BEHD nội tiếp và AH.AF=AM.AK
c) Gọi I là trung điểm của BC; EI cắt AK tại N. Chứng minh tứ giác EDNC là hình thang cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4: Cho đường tròn (O) ngoại tiếp tam giác nhọn ABC. Các đường cao BD và CE của tam giác ABC cắt nhau tại H (D thuộc AC, E thuộc AB).
a) Chứng minh BCDE là tứ giác nội tiếp
b) Đường thẳng OA cắt đường tròn (O) tại điểm thứ hai là M. Chứng minh BM = CH
c) Giả sử , AB = x. Tính diện tích hình viên phân giới hạn bởi dây AB và cung nhỏ AB theo a và x.
`a)` Ta có: `\hat{AHI}=\hat{AKI}=90^o`
`=>` Tứ giác `AHIK` nội tiếp đường tròn đường kính `AI`
`b)` Ta có: `\hat{COB}=2\hat{CAB}` (cùng chắn cung `BC`)
`=>\hat{COB}=2.60^o =120^o=[2\pi]/3(rad)`
`=>` Độ dài cung `BC` nhỏ là: `l=\hat{COB}.R=[2\pi R]/3`
`=>` Diện tích hình quạt giới hạn bởi `2` bán kính `OB;OC` và cung nhỏ `BC` là:
`S=[lR]/2=[R^2]/3`
a: góc AHI=góc AKI=90 độ
=>AHIK nội tiếp
b: góc BOC=2*60=120 độ
\(S_{quạtBC}=pi\cdot R^2\cdot\dfrac{120}{360}=\dfrac{1}{3}\cdot pi\cdot R^2\)
a: góc BOC=2*60=120 độ
độ dài cung nhỏ BC là:
l=pi*R*120/360=pi*R/3
S qBC=pi*R^2/3
S OBC=1/2*R*R*sinBOC=1/4R^2
=>S vp BC=R^2(pi/3-1/4)
b: góc BDH+góc BEH=180 độ
=>BDHE nội tiếp