Giúp e với ạ :
1) √(2x+5) ^2 = 5
2) √(-x+2) ^2 = 3
3) √(-2x+1) ^2 = 1 E cảm ơn nhiều ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Tìm x
a) (x-5) (x-3)+ 2(x-5)=0
b) (x-2)(x^2+2x+4)-(x+2)(x^2-2x+4)=2(x+2)
giúp e với ạ, e cảm ơn
a) (x - 5)(x - 3) + 2(x - 5) = 0
(x - 5)(x - 3 + 2) = 0
(x - 5)(x - 1) = 0
x - 5 = 0 hoặc x - 1 = 0
*) x - 5 = 0
x = 5
*) x - 1 = 0
x = 1
Vậy x = 1; x = 5
b) (x - 2)(x² + 2x + 4) - (x + 2)(x² - 2x + 4) = 2(x + 2)
x³ - 8 - x³ - 8 = 2x + 4
2x = -8 - 8 - 4
2x = -20
x = -20 : 2
x = -10
a)
\(\left(x-5\right)\left(x-3\right)+2\left(x-5\right)=0\)
\(\left(x-5\right)\left(x-3+2\right)=0\)
\(\left(x-5\right)\left(x-1\right)=0\)
\(x-5=0\) hoặc \(x-1=0\)
+) \(x-5=0\\ \Rightarrow x=5\)
+) \(x-1=0\\ \Rightarrow x=1\)
Vậy \(x=1\) hoặc \(x=5\)
b) \(\left(x-2\right)\left(x^2+2x+4\right)-\left(x+2\right)\left(x^2-2x+4\right)=2\left(x+2\right)\)
\(x^3-8-x^3-8=2x+4\)
\(2x=-8-8-4\)
\(2x=-20\)
\(x=-20:2\)
\(x=-10\)
Vậy \(x=-10\)
\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+30\right)=750\)
\(\Rightarrow x+1+x+2+x+3+...+x+30=750\)
Áp dụng tính chất giao hoán các tổng, ta được:
\(\left(1+2+3+...+30\right)+\left(x+x+x+...+x\right)=750\)
Để tính được số phần tử \(x\) xuất hiện, ta sử dụng công thức.
\(P=\dfrac{\left(\text{số đầu - số cuối}\right)}{\text{khoảng cách}}+1=\dfrac{30-1}{1}+1=30\)
Vậy:
\(\left(1+2+3+...+30\right)+30x=750\)
Để tính tổng của dãy số có quy luật, ta sử dụng công thức:
\(T=\left(\dfrac{\text{số đầu - số cuối}}{\text{khoảng cách}}+1\right):2\cdot\left(\text{số đầu + số cuối}\right)\)
\(T=\left(\dfrac{30-1}{1}+1\right):2\cdot\left(30+1\right)\)
\(T=15\cdot31=465\)
Vậy ta được biểu thức rút gọn như sau:
\(465+30x=720\)
\(30x=720-465=255\)
\(x=255:30=8,5\)
<=> x2 -4 -( x2- 2x +1) -2x = 0
<=> x2 -x2 +2x -1 -2x = 4
<=> -1 = 4 (vô lý)
<=> x∈ ∅
\(\left(x-2\right)\left(x+2\right)-\left(x-1\right)^2-2x=0\)
\(\Leftrightarrow x^2-4-x^2+2x-1-2x=0\)
\(\Leftrightarrow-5=0\) (vô lí)
Vậy: \(S=\varnothing\)
Hình hiển thị bị lỗi rồi. Bạn nên gõ hẳn đề ra để được hỗ trợ tốt hơn nhé.
d) \(\left|2x-3\right|=x-3\)
TH1: \(\left|2x-3\right|=2x-3\) với \(2x-3\ge0\Leftrightarrow x\ge\dfrac{3}{2}\)
Pt trở thành:
\(2x-3=x-3\) (ĐK: \(x\ge\dfrac{3}{2}\) )
\(\Leftrightarrow2x-x=-3+3\)
\(\Leftrightarrow x=0\left(ktm\right)\)
TH2: \(\left|2x-3\right|=-\left(2x-3\right)\) với \(2x-3< 0\Leftrightarrow x< \dfrac{3}{2}\)
Pt trở thành:
\(-\left(2x-3\right)=x-3\)
\(\Leftrightarrow-2x+3=x-3\)
\(\Leftrightarrow-2x-x=-3-3\)
\(\Leftrightarrow-3x=-6\)
\(\Leftrightarrow x=-\dfrac{6}{-3}=2\left(ktm\right)\)
Vậy Pt vô nghiệm
a: =>6x-3x^2-5=4-3x^2-2
=>6x-5=2
=>6x=7
=>x=7/6
b: =>20x+5-12x^2-3x=6x^2-10x+3x-5
=>-12x^2+17x+5-6x^2+7x+5=0
=>-18x^2+24x+10=0
=>x=5/3 hoặc x=-1/3
a) \(2\left(x+5\right)-x^2-5x=0\)
\(\Leftrightarrow2x+10-x^2-5x=0\)
\(\Leftrightarrow-x^2-3x+10=0\)
\(\Leftrightarrow x^2+3x-10=0\)
\(\Leftrightarrow x^2-2x+5x-10=0\)
\(\Leftrightarrow x\left(x-2\right)+5\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}}\)
b) \(x^3-6x^2+12x-8=0\)
\(\Leftrightarrow\left(x^3-8\right)-\left(6x^2-12x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)-6x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4-6x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-2\right)^3=0\)
\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
c)\(16x^2-9\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(4x\right)^2-\left[3\left(x+1\right)\right]^2=0\)
\(\Leftrightarrow\left(4x-3x-1\right)\left(4x+3x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(7x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\7x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{7}\end{cases}}}\)
d) \(x^3+x=0\)
\(\Leftrightarrow x^2\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
e)\(x^2-2x-3=0\)
\(\Leftrightarrow x^2+x-3x-3=0\)
\(\Leftrightarrow x\left(x+1\right)-3\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}}\)
\(TXD:D=R\)
\(\Leftrightarrow\frac{4^x}{2}+\frac{4^x}{3}-\frac{4^x}{5}>\frac{2^7}{2^x}+\frac{2^5}{2^x}-\frac{2^3}{2^x}\)
\(\Leftrightarrow4^x.\frac{19}{30}>\frac{1}{2^x}.152\\ \Leftrightarrow8^x>240\Leftrightarrow x>\log_8240\)
1:
=>|2x+5|=5
=>2x+5=5 hoặc 2x+5=-5
=>x=0 hoặc x=-5
2: =>|x-2|=3
=>x-2=3 hoặc x-2=-3
=>x=-1 hoặc x=5
3: =>|2x-1|=1
=>2x-1=1 hoặc 2x-1=-1
=>x=0 hoặc x=1