K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc BEC=1/2*180=90 độ

=>CE vuông góc AB

góc BDC=1/2*180=90 độ

=>BD vuông góc AC

góc AEH=góc ADH=90 độ

=>AEHD nội tiếp

b:

Gọi K là trung điểm của AH

=>K là tâm đường tròn ngoại tiếp tứ giác ADHE

góc KDO=góc KDH+góc ODH

=góc KHD+góc OBD

=90 độ

=>OD là tiếp tuyến của (K)

c, Do KC // AE 

\(\Rightarrow\)CM // AE

Ta có DF = DA = DE ( \(\Delta DAE.cân.ở.D\) )

\(\Rightarrow\Delta ADF\) cân ở D mà DC là đường cao ứng với đáy

\(\Rightarrow\) AC = CF

Mà CM // AE

\(\Rightarrow\) CM là đường TB 

\(\Rightarrow ME=MF\) 

\(\Delta AED\) cân ở D. BD là đường cao

 \(\Rightarrow\) BD là trung tuyến

\(\Rightarrow\) BA = BE

mà ME = MF

\(\Rightarrow\) BM là đường TB ứng vớ cạnh đáy AF

\(\Rightarrow\) BM // AF ; BM // AC

Vì \(\stackrel\frown{BA}=\stackrel\frown{BC}\Rightarrow BO\perp AC\) 

Mà BM // AC

\(\Rightarrow BO\perp BM\) 

\(\Rightarrow\) BM là tiếp tuyến đường tròn tâm O đường kính AD

7 tháng 2 2022

:)  kinh dzạy

7 tháng 2 2022

Ta có hình vẽ sau: C A D B E H K O

7 tháng 2 2022

có hình cứ có bài đâu =))

6 tháng 2 2021

b) Do \(\stackrel\frown{AM}=\stackrel\frown{CN}\) (theo câu a) => \(\widehat{AOM}=\widehat{CON}\)

Mà \(\widehat{AOM}+\widehat{MOC}=\widehat{AOC}=90^o\) => \(\widehat{NOC}+\widehat{MOC}=\widehat{MON}=90^o\)

Xét ΔOMN và ΔOAC có: \(\widehat{MON}=\widehat{AOC}=90^o\)

                                         OA = OM (=bán kính nửa đường tròn)

                                          OC = ON (=bán kính nửa đường tròn)

=> ΔOMN = ΔOAC (c.g.c) => MN = AC (2 cạnh tương ứng)

CMTT => ΔOMN = ΔOBC => MN = BC (2 cạnh tương ứng)

=> MN = AC = BC

a) Xét (O) có

M là một điểm nằm trên cung \(\stackrel\frown{CA}\)(gt)

nên \(sđ\stackrel\frown{CM}+sđ\stackrel\frown{MA}=sđ\stackrel\frown{CA}\)(1)

Xét (O) có 

N là một điểm nằm trên cung \(\stackrel\frown{CB}\)(gt)

nên \(sđ\stackrel\frown{CN}+sđ\stackrel\frown{NB}=sđ\stackrel\frown{CB}\)(2)

Xét (O) có AB là đường kính(gt)

nên O là trung điểm của AB

Xét ΔCAB có

CO là đường cao ứng với cạnh AB(gt)

CO là đường trung tuyến ứng với cạnh AB(O là trung điểm của AB)

Do đó: ΔCAB cân tại C(Định lí tam giác cân)

⇒CA=CB

\(sđ\stackrel\frown{CA}=sđ\stackrel\frown{CB}\)(3)

Từ (1), (2) và (3) suy ra \(sđ\stackrel\frown{CM}+sđ\stackrel\frown{AM}=sđ\stackrel\frown{CN}+sđ\stackrel\frown{NB}\)

mà \(sđ\stackrel\frown{CM}=sđ\stackrel\frown{BN}\)(gt)

nên \(sđ\stackrel\frown{AM}=sđ\stackrel\frown{CN}\)

hay \(\stackrel\frown{AM}=\stackrel\frown{CN}\)(đpcm)

Xét (O) có

AM là dây cung(A,M∈(O))

CN là dây cung(C,N∈(O))

\(\stackrel\frown{AM}=\stackrel\frown{CN}\)(cmt)

Do đó: AM=CN(Liên hệ giữa cung và dây)

21 tháng 5 2020

BẠN SAI RỒI CẮT NHAU TẠI E Ở NGOÀI ĐƯỜNG TRÒN MÀ

21 tháng 5 2020

dây cung AB và CD sao cho tia AB và tia CD cắt nhau tại điểm E ở ngoài đường tròn