K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2022

Ta có hình vẽ sau: C A D B E H K O

7 tháng 2 2022

có hình cứ có bài đâu =))

c, Do KC // AE 

\(\Rightarrow\)CM // AE

Ta có DF = DA = DE ( \(\Delta DAE.cân.ở.D\) )

\(\Rightarrow\Delta ADF\) cân ở D mà DC là đường cao ứng với đáy

\(\Rightarrow\) AC = CF

Mà CM // AE

\(\Rightarrow\) CM là đường TB 

\(\Rightarrow ME=MF\) 

\(\Delta AED\) cân ở D. BD là đường cao

 \(\Rightarrow\) BD là trung tuyến

\(\Rightarrow\) BA = BE

mà ME = MF

\(\Rightarrow\) BM là đường TB ứng vớ cạnh đáy AF

\(\Rightarrow\) BM // AF ; BM // AC

Vì \(\stackrel\frown{BA}=\stackrel\frown{BC}\Rightarrow BO\perp AC\) 

Mà BM // AC

\(\Rightarrow BO\perp BM\) 

\(\Rightarrow\) BM là tiếp tuyến đường tròn tâm O đường kính AD

7 tháng 2 2022

:)  kinh dzạy

6 tháng 2 2021

b) Do \(\stackrel\frown{AM}=\stackrel\frown{CN}\) (theo câu a) => \(\widehat{AOM}=\widehat{CON}\)

Mà \(\widehat{AOM}+\widehat{MOC}=\widehat{AOC}=90^o\) => \(\widehat{NOC}+\widehat{MOC}=\widehat{MON}=90^o\)

Xét ΔOMN và ΔOAC có: \(\widehat{MON}=\widehat{AOC}=90^o\)

                                         OA = OM (=bán kính nửa đường tròn)

                                          OC = ON (=bán kính nửa đường tròn)

=> ΔOMN = ΔOAC (c.g.c) => MN = AC (2 cạnh tương ứng)

CMTT => ΔOMN = ΔOBC => MN = BC (2 cạnh tương ứng)

=> MN = AC = BC

a) Xét (O) có

M là một điểm nằm trên cung \(\stackrel\frown{CA}\)(gt)

nên \(sđ\stackrel\frown{CM}+sđ\stackrel\frown{MA}=sđ\stackrel\frown{CA}\)(1)

Xét (O) có 

N là một điểm nằm trên cung \(\stackrel\frown{CB}\)(gt)

nên \(sđ\stackrel\frown{CN}+sđ\stackrel\frown{NB}=sđ\stackrel\frown{CB}\)(2)

Xét (O) có AB là đường kính(gt)

nên O là trung điểm của AB

Xét ΔCAB có

CO là đường cao ứng với cạnh AB(gt)

CO là đường trung tuyến ứng với cạnh AB(O là trung điểm của AB)

Do đó: ΔCAB cân tại C(Định lí tam giác cân)

⇒CA=CB

\(sđ\stackrel\frown{CA}=sđ\stackrel\frown{CB}\)(3)

Từ (1), (2) và (3) suy ra \(sđ\stackrel\frown{CM}+sđ\stackrel\frown{AM}=sđ\stackrel\frown{CN}+sđ\stackrel\frown{NB}\)

mà \(sđ\stackrel\frown{CM}=sđ\stackrel\frown{BN}\)(gt)

nên \(sđ\stackrel\frown{AM}=sđ\stackrel\frown{CN}\)

hay \(\stackrel\frown{AM}=\stackrel\frown{CN}\)(đpcm)

Xét (O) có

AM là dây cung(A,M∈(O))

CN là dây cung(C,N∈(O))

\(\stackrel\frown{AM}=\stackrel\frown{CN}\)(cmt)

Do đó: AM=CN(Liên hệ giữa cung và dây)