Cho x,y là số nguyên thỏa mãn 3x-5y chia hết cho 23. Chứng minh rằng 5x-16y cũng thỏa mãn chia hết cho 23 ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(S=\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{100^2}\right)\)
\(S=\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right)...\left(1-\frac{1}{10000}\right)\)
\(S=\frac{3}{4}.\frac{8}{9}...\frac{9999}{10000}\)
\(S=\frac{1.3}{2.2}.\frac{2.4}{3.3}...\frac{99.101}{100.100}\)
\(S=\frac{1.2...99}{2.3...100}.\frac{3.4...101}{2.3...100}\)
\(S=\frac{1}{100}.\frac{101}{2}\)
\(S=\frac{101}{200}\)
2.
Vì 3x - 5y \(⋮\)23
\(\Rightarrow\)6 . ( 3x - 5y ) \(⋮\)23
Ta có : 6 . ( 3x - 5y ) + ( 5x - 16y )
\(\Leftrightarrow\)( 18x - 30y ) + ( 5x - 16y )
\(\Leftrightarrow\)23x - 46y
\(\Leftrightarrow\)23 . ( x - 2y ) \(⋮\)23
Vì 18x - 30y \(⋮\)23 mà ( 5 ; 23 ) = 1
\(\Rightarrow\)5x - 16y \(⋮\)23
Đề bài sai. C/m 28x-16y chia hết cho 23 mới đúng
3x-5y chia hết cho 23 => 6(3x-5y)=18x-30y chia hết cho 23
28x-16y+18x-30y=46x-46y chia hết cho 23 nên 28x-16y chia hết cho 23
p=a^2+b^2 (1)
p là số nguyên tố, p-5 chia hết 8 => p lẻ >=13 và a,b có 1 chẵn 1 lẻ
A=a.x^2-b.y^2 chia hết cho p, nên có thể viết A = p(c.x^2 -d.y^2) với c,d phải nguyên
và c.p = a và d.p = b
thay (1) vào ta thấy c=a/(a^2+b^2) cần nguyên là vô lý vậy A muốn chia hết cho p <=> x và y cùng là bội số của p
Đặt \(p=8k+5\left(đk:K\in N\right)\)
Vì: \(\left(ax^2\right)^{4k+2}-\left(by^2\right)^{4k+2}⋮\left(ax^2-by^2\right)\)
\(\Rightarrow a^{4k+2}.x^{8k+4}-b^{4k+2}.y^{8k+4}⋮p\)
Mà \(a^{4k+2}.x^{8k+4}-b^{4k+2}.y^{8k+4}\)\(=\left(a^{4k+2}+b^{4k+2}\right).x^{8k+4}-b^{4k+2}\)\(\left(x^{8k+4}+y^{8k+4}\right)\)
Ta lại có: \(a^{4k+2}+b^{4k+2}=\left(a^2\right)^{2k+1}+\left(b^2\right)^{2k+1}⋮p\) ; p<d nên \(x^{8k+4}+y^{8k+4}⋮p\)
Làm tiếp đi
\(\left(x-y\right)^2+2xy⋮4\)
\(\Rightarrow x^2-2xy+y^2+2xy⋮4\)
\(\Rightarrow x^2+y^2⋮4\)
\(\Rightarrow x^2⋮4;y^2⋮4\)
mà \(4⋮2\)
\(\Rightarrow x^2⋮2;y^2⋮2\Rightarrow x⋮2;y⋮2\)
\(\Rightarrow dpcm\)
Bài làm của bạn Trí từ chỗ \(x^2+y^2⋮4\Rightarrow x^2,y^2⋮4\) thì bạn còn phải xét thêm trường hợp \(x,y\) cùng lẻ nữa. Vì số chính phương khi chia cho 4 chỉ có thể dư 0 hoặc 1 nên nếu \(x,y\) lẻ thì \(x^2+y^2\) chia 4 dư 2, không thỏa mãn. Vậy mới suy ra được \(x^2,y^2⋮4\). Còn lại bạn đúng hết rồi.
xét hiệu A=5(3x-5y)-3(5x-16y)=23y
=> A chia hết cho 23,mà 3x-5y chia hết cho 23=>3(5x-16y) chia hết cho 23
Mà (3;23)=1=>5x-16y chia hết cho 23(đpcm)