K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2017

a)

         f(x)= -x-7x4 -2x3+ x+ 4x + 8

         g(x)=x+7x4+2x3+3x- 3x   -8

f(x)+g(x)  =0   -0    -0    + 4x2 +x+0

         g(x)=x+7x4+2x3+3x- 3x  -8

         f(x)= -x-7x4 -2x3+ x+ 4x + 8

g(x)-f(x)  =2x5+14x4+4x3+2x2-7x  -16

b)

Bậc:5

Hệ số cao nhất:2

hệ số tự do:16

c)

Để đt h(x) có nghiệm thì 

4x2+x=0

->4x.x+x=0

->(4x+1)x=0

->th1:x=0 -> x=0

        4x+1=0 -> x=-1/4

Vậy đt h(x) có nghiệm là x=0 hoặc x=-1/4

Lần sau bn viết rõ hơn nhé

mik dich mún lòi mắt

7 tháng 7 2018

a)f(x)+g(x)=\(x^5-4x^4-2x^2-7-2x^5+6x^4-2x^2+6.\)

=\(-x^5+2x^4-4x^2-1\)

f(x)-g(x)=\(x^5-4x^4-2x^2-7+2x^5-6x^4+2x^2-6\)

=\(3x^5-10x^4-13\)

b)f(x)+g(x)=\(5x^4+7x^3-6x^2+3x-7-4x^4+2x^3-5x^2+4x+5\)

=\(x^4+9x^3-11x^2+7x-2\)

f(x)-g(x)=\(5x^4+7x^3-6x^2+3x-7+4x^4-2x^3+5x^2-4x-5\)

=\(9x^4+5x^3-x^2-x-12\)

7 tháng 7 2018

a ) 

\(f\left(x\right)+g\left(x\right)=x^5-4x^4-2x^2-7+-2x^5+6x^4-2x^2+6\)

\(\Rightarrow f\left(x\right)+g\left(x\right)=\left(x^5-2x^5\right)+\left(6x^4-4x^4\right)-\left(2x^2+2x^2\right)+\left(6-7\right)\)

\(\Rightarrow f\left(x\right)+g\left(x\right)=-x^5+2x^4-4x^2-1\)

\(f\left(x\right)-g\left(x\right)=x^5-4x^4-2x^2-7-\left(-2x^5+6x^4-2x^2+6\right)\)

\(\Rightarrow f\left(x\right)-g\left(x\right)=x^5-4x^4-2x^2-7+2x^5-6x^4+2x^2-6\)

\(\Rightarrow f\left(x\right)-g\left(x\right)=\left(x^5+2x^5\right)-\left(4x^4+6x^4\right)+\left(2x^2-2x^2\right)-\left(6+7\right)\)

\(\Rightarrow f\left(x\right)-g\left(x\right)=3x^5-10x^4-13\)

21 tháng 5 2016

a, 4x^3 +3x^2+7x

b, = 0

1 tháng 8 2020

\(F=-3\left(x-8\right)\left(2x+1\right)-\left(x+5\right)\left(2-3x\right)-4x\left(x-6\right)\)

\(=-3\left(-3-8\right)\left(-6+1\right)-\left(5-3\right)\left(2+9\right)+12\left(-9\right)\)

\(=-3\left(-11\right)\left(-5\right)-\left(-2\right)11-12.9\)

\(=-165+22-108=22-273=-251\)

\(G=\left(5x-4\right)\left(5-2x\right)-7x\left(x^2-4x+3\right)+\left(x^2-4x\right)\left(7x-2\right)\)

\(=\left(5-4\right)\left(5-2\right)-7\left(1-4+3\right)+\left(1-4\right)\left(7-2\right)\)

\(=3-7.0+5.\left(-3\right)=3-15=-12\)

\(H=\left(-3x+5\right)\left(x-6\right)-\left(x-1\right)\left(x^2-2x+3\right)+\left(x+2\right)\left(x^2-3\right)\)

\(=\left(3+5\right)\left(-1-6\right)-\left(-1-1\right)\left(1+2+3\right)+\left(-1+2\right)\left(1-3\right)\)

\(=8\left(-7\right)-\left(-2\right)6+1\left(-2\right)=-56+12-2=-46\)

1 tháng 8 2020

\(L=5x\left(x-1\right)\left(2x+3\right)-10x\left(x^2-4x+5\right)-\left(x-1\right)\left(x-4\right)\)

\(=-\frac{5}{3}\left(-\frac{4}{3}\right)\left(-\frac{2}{3}+3\right)+\frac{10}{3}\left(\frac{1}{9}+\frac{4}{3}+5\right)-\left(-\frac{4}{3}\right)\left(-\frac{1}{3}-4\right)\)

\(=\frac{20}{9}\left(\frac{7}{3}\right)+\frac{10}{3}\left(\frac{13}{9}+5\right)+\frac{4}{3}\left(-\frac{13}{3}\right)\)

\(=\frac{140}{27}+\frac{10}{3}.\frac{58}{9}-\frac{52}{9}\)

\(=\frac{140}{27}+\frac{580}{27}-\frac{156}{27}=\frac{140+580-156}{27}=\frac{720-156}{27}=\frac{564}{27}\)

\(M=-7x\left(x-5\right)-\left(x-1\right)\left(x^2-x-2\right)+x^2\left(x-3\right)-5x\left(x-8\right)\)

\(=\frac{-7}{2}\left(\frac{1}{2}-5\right)+\frac{\left(\frac{1}{4}-\frac{1}{2}-2\right)}{2}+\frac{1}{4}\left(\frac{1}{2}-3\right)-\frac{5}{2}\left(\frac{1}{2}-8\right)\)

\(=\frac{7}{2}.\frac{9}{2}-\frac{9}{8}-\frac{1}{4}.\frac{5}{2}+\frac{5}{2}.\frac{15}{2}\)

\(=\frac{63}{4}-\frac{9}{8}-\frac{5}{8}+\frac{75}{4}=\frac{138}{4}-\frac{7}{4}=\frac{131}{4}\)

6 tháng 6 2018

Giải:

a) \(h\left(x\right)=f\left(x\right)+g\left(x\right)\)

\(\Leftrightarrow h\left(x\right)=9-x^5+4x-2x^3+x^2-7x^4+x^5-9+2x^2+7x^4+2x^3-3x\)

\(\Leftrightarrow h\left(x\right)=x+3x^2\)

b) Để đa thức h(x) có nghiệm

\(\Leftrightarrow h\left(x\right)=0\)

\(\Leftrightarrow x+3x^2=0\)

\(\Leftrightarrow x\left(1+3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\1-3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy ...

\(f\left(x\right)=x^5-4x^4-2x^2-7\)

\(g\left(x\right)=-2x^5+6x^4-2x^2+6\)

\(f\left(x\right)+g\left(x\right)=-x^5+2x^4-4x^2-1\)

\(f\left(x\right)-g\left(x\right)=3x^5-10x^4-13\)

14 tháng 7 2016

a)\(f\left(x\right)=x^5-3x^2+7x^4-x^5+2x^2-9x^3+x^2-\frac{1}{4}x+2x-3\)

\(=x^5-x^5+7x^4-9x^3-3x^2+2x^2+x^2-\frac{1}{4}x+2x-3\)

\(=7x^4-9x^3+\frac{7}{4}x-3\)

\(g\left(x\right)=5x^4-x^5+\frac{1}{2}x^2+x^5+x^2-4x^4-2x^3+3x^2+x^3-\frac{1}{4}\)

\(=-x^5+x^5+5x^4-4x^4-2x^3+x^3+\frac{1}{2}x^2+x^2+3x^2-\frac{1}{4}\)

\(=x^4-x^3+\frac{9}{2}x^2-\frac{1}{4}\)

b)\(f\left(1\right)=7.1^4-9.1^3+\frac{7}{4}.1-3=7-9+\frac{7}{4}-3=-\frac{13}{4}\)

\(f\left(-1\right)=7.\left(-1\right)^4-9.\left(-1\right)^3+\frac{7}{4}.\left(-1\right)-3=7+9-\frac{7}{4}-3=\frac{45}{4}\)

\(g\left(1\right)=1^4-1^3+\frac{9}{2}.1^2-\frac{1}{4}=1-1+\frac{9}{2}-\frac{1}{4}=\frac{17}{4}\)

\(g\left(-1\right)=\left(-1\right)^4-\left(-1\right)^3+\frac{9}{2}.\left(-1\right)^2-\frac{1}{4}=1+1+\frac{9}{2}-\frac{1}{4}=\frac{25}{4}\)

14 tháng 7 2016

c) Ta có: f(x)+g(x)=\(7x^4-9x^3+\frac{7}{4}x-3+x^4-x^3+\frac{9}{2}x^2-\frac{1}{4}=7x^4+x^4-9x^3-x^3+\frac{9}{2}x^2+\frac{7}{4}x-3-\frac{1}{4}\)

\(=8x^4-10x^3+\frac{9}{2}x^2+\frac{7}{4}x-\frac{13}{4}\)

f(x)-g(x) =\(7x^4-9x^3+\frac{7}{4}x-3-x^4+x^3-\frac{9}{2}x^2+\frac{1}{4}=7x^4-x^4-9x^3+x^3-\frac{9}{2}x^2+\frac{7}{4}x-3+\frac{1}{4}\)

\(=6x^4-8x^3-\frac{9}{2}x^2+\frac{7}{4}x-\frac{11}{4}\)

5 tháng 6 2017

\(f\left(x\right)=-x^5-7x^4-2x^3+x^2+4x+9\)

\(g\left(x\right)=x^5+7x^4+2x^3+2x^2-3x-9\)

\(h\left(x\right)=4x^2+x\)

Ta có :

\(h\left(x\right)=0\)

\(\Rightarrow4x^2+x=0\)

\(\Rightarrow x\left(4x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{4}\end{cases}}\)

5 tháng 6 2017

a)

f( x) + g(x) = ( -x5 - 7x4 - 2x3 + x2 + 4x + 9 ) +( x5 + 7x4 + 2x3 + 2x2 - 3x - 9 )

= -x5 - 7x4 - 2x3 + x2 + 4x + 9 + x5 + 7x4 + 2x3 + 2x2 - 3x - 9

= ( -x5 + x5 ) + ( -7x4 + 7x4 ) + ( -2x3 + 2x3 ) + ( x2 + 2x2 ) + ( 4x -3x ) + ( 9 - 9 )

= 3x2 + x

mình chỉ biết làm phần a để phần b mình nghĩ đã hihi