K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 12 2020

Bạn xem lại đề bài, mặc dù bài này giải được ra kết quả cụ thể, nhưng chắc không ai cho đề như vậy cả

Sau khi tính toán thì \(P_{min}=4+2\sqrt{3}\) 

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{3-\sqrt{6\sqrt{3}-9}}{6};\dfrac{3+\sqrt{6\sqrt{3}-9}}{6}\right)\) và hoán vị

Nhìn thật kinh khủng, chẳng có lý gì cả.

Nếu điều kiện \(x+y=1\) thì biểu thức \(P=\dfrac{a}{x^3+y^3}+\dfrac{b}{xy}\) cần có tỉ lệ \(\dfrac{b}{a}\ge3\) để ra 1 kết quả đẹp mắt và bình thường

Ví dụ có thể cho đề là \(P=\dfrac{1}{3\left(x^3+y^3\right)}+\dfrac{1}{xy}\) hoặc \(P=\dfrac{1}{x^3+y^3}+\dfrac{4}{xy}\) gì đó :)

21 tháng 5 2015

có đấy. toán nâng cao lớp 6 có đó!~

11 tháng 6 2016

cuc tri cua lop 8 9 mà

31 tháng 10 2020

Áp dụng bất đẳng thức AM - GM, ta được: \(2xy-4=x+y\ge2\sqrt{xy}\)

Đặt \(\sqrt{xy}=t\)thì ta có: \(2t^2-2t-4\ge0\Leftrightarrow2\left(t-2\right)\left(t+1\right)\ge0\Rightarrow t\ge2\)

\(\Rightarrow xy\ge4\)

\(P=xy+\frac{1}{x^2}+\frac{1}{y^2}\ge xy+\frac{2}{xy}=\left(\frac{2}{xy}+\frac{xy}{8}\right)+\frac{7xy}{8}\ge2\sqrt{\frac{2}{xy}.\frac{xy}{8}}+\frac{7.4}{8}=\frac{9}{2}\)

Đẳng thức xảy ra khi x = y = 2

4 tháng 9 2016

Đặt \(B=\frac{\left(x+y+1\right)^2}{xy+x+y}\)

Ta có bđt sau \(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\) tự chứng mình nha 

Áp dụng \(a=x,b=y,c=1\)

Ta có : \(B=\frac{\left(x+y+1\right)^2}{xy+x+y}\ge3\)

Ta có : \(A=\frac{1}{B}+B=\frac{1}{B}+\frac{B}{9}+\frac{8B}{9}\ge\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)

Dấu " = " xảy ra khi \(x=y=1\)

6 tháng 12 2023

Ta thấy 
72
=
2
3
.
3
2
72=2 
3
 .3 
2
  nên a, b có dạng 
{

=
2

3


=
2

.
3


a=2 
x
 3 
y
 
b=2 
z
 .3 
t
 

  với 

,

,

,


N
x,y,z,t∈N và 



{

,

}
=
3
;



{

,

}
=
2
max{x,z}=3;max{y,t}=2. 

 Theo đề bài, ta có 
2

.
3

+
2

.
3

=
42

x
 .3 
y
 +2 
z
 .3 
t
 =42

 

2


1
.
3


1
+
2


1
3


1
=
7
⇔2 
x−1
 .3 
y−1
 +2 
z−1
 3 
t−1
 =7   (*), do đó 

,

,

,


1
x,y,z,t≥1

 TH1: 



,



x≥z,y≤t. Khi đó 

=
3
,

=
2
x=3,t=2. (*) thành:

 
4.
3


1
+
3.
2


1
=
7
4.3 
y−1
 +3.2 
z−1
 =7 


=

=
1
⇔y=z=1

 Vậy 
{

=
24

=
18

a=24
b=18

  (nhận)

 TH2: KMTQ thì giả sử 



,



x≥z,y≥t. Khi đó 

=
3
,

=
2
x=3,z=2. (*) thành 

 
4.
3


1
+
2.
3


1
=
7
4.3 
y−1
 +2.3 
t−1
 =7, điều này là vô lí.

 Vậy 
(

,

)
=
(
24
,
18
)
(a,b)=(24,18) hay 
(
18
,
24
)
(18,24) là cặp số duy nhất thỏa yêu cầu bài toán.

NV
10 tháng 4 2021

\(x\ge xy+1\Rightarrow1\ge y+\dfrac{1}{x}\ge2\sqrt{\dfrac{y}{x}}\Rightarrow\dfrac{y}{x}\le\dfrac{1}{4}\)

\(Q^2=\dfrac{x^2+2xy+y^2}{3x^2-xy+y^2}=\dfrac{\left(\dfrac{y}{x}\right)^2+2\left(\dfrac{y}{x}\right)+1}{\left(\dfrac{y}{x}\right)^2-\dfrac{y}{x}+3}\)

Đặt \(\dfrac{y}{x}=t\le\dfrac{1}{4}\) 

\(Q^2=\dfrac{t^2+2t+1}{t^2-t+3}=\dfrac{t^2+2t+1}{t^2-t+3}-\dfrac{5}{9}+\dfrac{5}{9}\)

\(Q^2=\dfrac{\left(4t-1\right)\left(t+6\right)}{9\left(t^2-t+3\right)}+\dfrac{5}{9}\le\dfrac{5}{9}\)

\(\Rightarrow Q_{max}=\dfrac{\sqrt{5}}{3}\) khi \(t=\dfrac{1}{4}\) hay \(\left(x;y\right)=\left(2;\dfrac{1}{2}\right)\)

10 tháng 11 2016

Đã làm được, thank các bác nhiều!